= max {ki, ka}.

since (m,n)=1 , there exist two positive integers r and s
such that rn = ms + 1. But from [[a,b]yb?], = 0 =
[[ab], b™], we get [[a,b], b*™] = 0 = [[ab],b™];
hence b [a,b]y 1 = 0. Now considering Lemma 5 we
may (and shall) assume that R is a local ring. If PEN
then [ab] = 0 by (i). Therefore suppose that b&N
then b1 exists, and b5™[a,b]y .1 =0 implies that
[a,b]v41 = 0  This completes the proof,

REMARK

"The ring of quaternions shows that condition (ii) in (1),

(2), (3), and (4) is essential. The non commutative ring

a b c
R= a2 0 :a,b,cEGF(4)
0 0 a

represented in [1] satisfies (i), (ii), and (I)s ; but does not
satisfy Q(6). That is , Q(n) can not be dropped in (2).
‘The non commutative ring R in [5, Remark] satisfying
(i), (ii), and (I)'3 shows that (I), in (3) can not be
replaced by (I)'y.
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a€N and bER (ab+b)™-(ba+b)™ = [a, b™] for all
positive integers m.

PROOF. Let aeN , bER. Since N is a
commutative ideal, it is easy to see that for all integers
t>1, a' and (ab)'=(ba)! are both in the center of R.
On the other hand for all the positive integers m we
have:

(ab+b)® = (ab)™ + ( ’}‘ )(ab)™b
ot ( m”fz )(ab)%™2 + (ab)b™1

+ b(ab)b™2 +..+ b™l(ab)b + b™

= (ba)™ + (’;‘ J(ba)™ b +...

+ (™ )(ba)™2 + ab™ + bab™!
ﬂ -

L

+..+ b™lab + b
Also,
(ba+b)™ = (ba)™ + () (ba)™ b +..+
(7 )(6a)pm2+ bab™! +..+ b™lab +b%a +b"

Thus (ab + b)™ - (ba+b)™ = ab™ -b™a = [a,b™].

LEMMA 8

If N is a commutative ideal in R and I€R, then (I),
implies that for each aEN , bER there exists a positive
integer k=k(a,b) such that nfa,bjy = 0.

PROOF. Let aEN, bER. By (1), (1+a)™1EZ(k)
or a €Z(k) for some positive integer k. But Nisa
commutative ideal , hence for each positive integer 1>1,
at€Z<Z (k). Therefore in any case na€Z(k),
ienfab]y = [nab]y = 0.

LEMMA 9

If N is a commutative ideal in R and R satisfies (I)', then
for each aEN , bER there exists a positive integer
k=k(a,b)>1 such that [fab]yy, b*] = 0.

PROOF. Let a€N, bER. By (I)'y[ab] = 0 or
for some integer k>1, (a+b)*-b*EZ(K). But
[(a+b)*-b%a+b] = -[b" a+b] = [a,b"], thus

(a+b)*-bEZ(k) implies that [[a,b™], b]x.1=0

,Le.[[a,b]k-l,b“] =0
Now we are ready to prove our Theorem.

PROOF OF THE MAIN THEOREM

(1) see Lemma 5 and [3, Theorem 1(5)].

(2) In view of Lemma 6, it suffices to show that if R
is a local ring satistying (i) , (i) , (I)s and Q(n) then it is
commutative. For any €N, b €R by Lemmal and
Lemma 8, there exists a positive integer k£ such that
nfab]y = 0 . Thus by Q(n),{a,b]y = 0 hence R is
commutative, by (1).

(3). By Lemma 6, we may assume that R is a local
ring satisfying (i), (i) and (I), for a prime number n.

Now, if N is contained in Z then by a well known
theorem of Herstein [2], (ii) impliess that R is
commutative. Suppose that N is not contained in Z then,
by lemma 4, there exists a prime number p such that
Char. R = p% —II\% = GF(r) where r=p’3.

Let a€N, b&R. Using (1) it suffices to show that there
exists a positive integer k such that [a,b/,=0. To prove
this we consider the following two cases:

Case(1) n#p (recall that p is a prime number). By
Lemma 8 there exists a positive integer kK such that
nfa,b]y = 0. But n and P are relatively prime, and
CharR=p%; hence [a,b]y =0 .

Case (2) n=p. Let c==(b)¥’ﬁ'1 then cP=b" where
r=pﬁ and ]—1} = GF(r) hence b-b'EN,i.e. [a,c?] =
[a,b"] = [a,bJsince by (i) N is commutative. But by
(I)nthere exists an integer k>1 such that c€Z(k) or
(a+c)? - c® € Z(k). Moreover , [(a+c)® -c® a+c]
=[a,c®] = [a,c?] = [a,b]; hence in any case
[a,b]y=0. This completes the proof.

(4). Let aEN, bER . Using (1) it suffices to show
that there exists a positive integer k such that [a,b]y=0.
But by Lemma 9, there exists. a positive integer k7 such
that
[[ab]i b"] =0
Also, considering Lemma7, (II),, implies that :

[[ab} , b"] = [[a)bm]:b]kz =0
for some positive integers k, and m with (m,n) =1.
Therefore [{a,b] (, b™] = 0 = [[ab]y, b?], for k
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(iif) For each aEN, bER there exists a positive integer
k= k(a,b) such that [ab], = 0.

THEOREM
Let R be a ring which satisfies (i) and (if). Then under
any of the following additional conditions R is a
subdirect sum of nil commutative and local
commutative rings.

(1) R satisfies (iif).

(2) R satisfies (I), and Q(n).

(3) R satisfies (I), where n is a prime number.

(4) R satisfies (II), and (I)',.
In preparation for proving the above Theorem, we

establish the following Lemmas:

LEMMA 1
If R satisfies (i) and (i), then N is a commutative nil

ideal containing the commutator ideal of R.

PROOF

This is a well- known result (e.g.see{3,Lemmal(6)]).

LEMMA 2

If R satisfies (iii) or (I)'y then R is a normal ring.

PROOF

Let e be an idempotent element and xE€R. Then
(exe-xe)? = 0, i.e.(exe-xe) EN.

- First suppose that R satisfies (jii), then there exists a
positive integer k such that [exe-xe, ey =0. An easy
induction on k shows that [exe-xe, e]y = exe -xe. Thus
exe = Xxe; hence e is a centeral element in R.

Next if R satisfies (I)',, then (exe-xe + ¢}-eEN
implies that either (exe-xe+e)"-e"€Z(k) for.some
positive integer k, or [exe-xe,e]=0 . Therefore in any
case [exe -xe ,efy = [(exe -xe + e)"-e"e]y =0. The
rest of the proof proceeds as above.

LEMMA 3
If R satisfies (I), then R is normal.

PROOPF. The proof is quite similar to that of
Lemma2. )
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ILEMMA 4. Let R be a normal subdirectly
irreducible ring. if R satisfies (i), (ii), and N is not
contained in Z, then R is of characteristic p® where pis a

prime number.
PROOF. See [ 3,Lemma I (8)].

LEMMA 5. Suppose that R satisfies (i) and (ii).
Moreover, if R satisfies either (iii) or (I)’', then R is a
subdirect sum of nil commutative and local rings.

PROOQOF. ovviously, if f is a homomorphism from R
onto R*, then f(N) = N* is the set of all nilpotent
elements in R* . Thus it can be casily seen that any
subring and any homomorphic image of R satisfies (i)
and (ii). Moreover, if R satisfies (iii) (resp. (I)'y). then
any subring and any homomorphic image of R

-satisfies (iii) (resp. (I)'y). By Birkhoff’s theorem R is

isomorphic to a subdirect sum of subdirectly
irreducible rings. Therefore we may (and shall) assume
that R is a subdirectly irreducible ring. Now for each x
In R, x™ = x™*y’ for some positive integer m  and
some x' in the subring generated by x. Thus x™'® =
e is idempotent . Therefore if R satisfies either (iii) or
(1)',, then by Lemma 2, € is a centeral element in R.
But R is a subdirectly irreducible ring , hence e=0 or
e = I(if 1ER). On the other hand as it can be seen
easily, x™ = x™e; thus if R has no identity element it
must be nil and therefore commutative, by (i). If R has
an identity element then e==0 or e=1 implies that each
XER is either a nilpotent or a unit element in R, i.e. R
is a local ring. This completes the proof .

LEMMA 6
Suppose that R satisfies (i) and (ii). Moreover if R
satisfies (I), , then R is a subdirect sum of nil

commutative and local rings.

PROOF. The proof is quite similar to that of
Lemmas.

LEMMA 7. If N is a commutative ideal, then for all
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ABSTRACT

extensions of the results of [1].

Let R be an associative ring in which N the set of all nilpotent elements in R is
commutative, and for each x in R there exists a polynomial f with integer coeﬁ‘zczents
such that x «*(x) € N. We discuss some of the conditions on R which imply that R isa
subdirect sum of nil commutative and local commutative rings, obtaining some

Throughout the present paper, R will represent an
associative ring with center Z, and N the set of all
nilpotent elements in R. Following [6], generalized
commutators [X,x1,%3,X3....Xx] for positive integers k are
defined as follows: [x,x;] = xxi-xyxifk=1, and
[[6x1X0 X5 Xx 1 JXx] if k> 1. Forxy = xp = x3 = ...
=Xy =y, [X,),),...,y] is abbereviated as [x,y/y. We
denote by Z(k)the set of all x in R such that
[xx150 5 xx ] =0 for all X3,X0X3...X in R; Z(0) =
0. A ringR is said to be normal if E the set of all
idempotents in R is centeral.

The purpose of this paper is to prove the following
generalization of the principle theorem of [1], which is
also releated to a number of recent results by Tominaga
and Yaqub (e.gsee [3], [4]).

Let n be a fixed positive integer, and consider the

following conditions:

(I) o If x,y € R and x-y€EN, then either
x"-y"EZ(k)or bothx,y are in Z(k) for some positive
integer k=k(x,y) depending on x and ).

(1), If x,yEN, then either x" - y* € Z(k) for
some positive integer k=k(x,y)depending onx andy,
or both x,y commute with all nilpotent elements in R.

(II);, For any aEN, bER there exists a positive
integer k= k(a,b) such that [(ab+b)™-(ba+b)™,
bjy= 0 for some positive integer m=m(a,b) with
(mn) = 1.

Q(n) For any aEN, bER, nfa,b] = 0 implies that
[ab] = 0.

(i) N is commutative.
(ii) For each xER there exists a polynomial f(x) with
integer coefficients such that x - x2 f(x) € N.
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