$= max \{k_1, k_2\}.$

since (m,n)=1, there exist two positive integers r and s such that rn=ms+1. But from $[[a,b]_kb^n]$, $=0=[[a,b]_kb^m]$, we get $[[a,b]_kb^{sm}]=0=[[a,b]_kb^n]$; hence b^{sm} $[a,b]_{k+1}=0$. Now considering Lemma 5 we may (and shall) assume that R is a local ring. If $b\in N$ then [a,b]=0 by (i). Therefore suppose that $b\notin N$ then b^{-1} exists, and $b^{sm}[a,b]_{k+1}=0$ implies that $[a,b]_{k+1}=0$. This completes the proof.

REMARK

The ring of quaternions shows that condition (ii) in (1).

(2), (3), and (4) is essential. The non commutative ring

$$R = \left\{ \begin{bmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{bmatrix} : a,b,c \in GF(4) \right\}$$

represented in [1] satisfies (i), (ii), and (I)₆; but does not satisfy Q(6). That is , Q(n) can not be dropped in (2). The non commutative ring R in [5, Remark] satisfying (i), (ii), and (I)'₃ shows that (I)_n in (3) can not be replaced by (I)'_n.

REFERENCES :__

- [1] H. ABU-KHUZAM and ADIL YAQUB, Structure and commutativity of rings with constraints on nilpotent elements, Math. J. Okayama Vol. 21, No. 2,1979.
- [2] I. N. HERSTEIN Structure of certain class of rings, American J. Math. 75 (1953), 864-871.
- [3] H. TOMINAGA, some conditions for commutativity of rings with constraints on nilpotent elements, Math. J. Okayama Vol.28 (1986) 97-100.
- [4] H . TOMINAGA, and ADLL YAQUB,

- commutativity theorems for rings with a commutative subset or a nil subset, Math. J. Okayama Vol.26 (1984)119-124
- [5] D.OUTCALT and A.YAQUB, Structure and commutativity of rings with constraints on nilpotent elements, Math. J. Okayama Vol. 21, No.1,1979.
- [6] AMIR YAMINI, Some commutativity results for rings with certain polynomial identites, Math. J.Okayama 26 (1984)133-136.

 $a \in \mathbb{N}$ and $b \in \mathbb{R}$ $(ab+b)^{\mathbf{m}} - (ba+b)^{\mathbf{m}} = [a, b^{\mathbf{m}}]$ for all positive integers m.

PROOF. Let $a \in N$, $b \in R$. Since N is a commutative ideal, it is easy to see that for all integers t>1, a^t and $(ab)^t=(ba)^t$ are both in the center of R. On the other hand for all the positive integers m we have:

$$(ab+b)^{m} = (ab)^{m} + {m \choose 1} (ab)^{m-1}b$$

$$+ ... + {m \choose m-2} (ab)^{2}b^{m-2} + (ab)b^{m-1}$$

$$+ b(ab)b^{m-2} + ... + b^{m-1}(ab)b + b^{m}$$

$$= (ba)^{m} + {m \choose 1} (ba)^{m-1}b + ...$$

$$+ {m \choose m-2} (ba)^{2}b^{m-2} + ab^{m} + bab^{m-1}$$

$$+ ... + b^{m-1} ab + b^{m}$$

Also,

$$(ba+b)^{m} = (ba)^{m} + (\frac{m}{l}) (ba)^{m-1} b + \dots + \\ (\frac{m}{m-2})(ba)^{2}b^{m-2} + bab^{m-1} + \dots + b^{m-1}ab + b^{m}a + b^{m}$$
 Thus $(ab+b)^{m} - (ba+b)^{m} = ab^{m} - b^{m}a = [a,b^{m}].$

LEMMA 8

If N is a commutative ideal in R and $I \in R$, then $(I)_n$ implies that for each $a \in N$, $b \in R$ there exists a positive integer k=k(a,b) such that $n[a,b]_k=0$.

PROOF. Let $a{\in}N$, $b{\in}R$. By $(1)_n$, $(1+a)^n-1{\in}Z(k)$ or $a{\in}Z(k)$ for some positive integer k. But N is a commutative ideal, hence for each positive integer $t{>}1$, $a^t{\in}Z{\subseteq}Z(k)$. Therefore in any case $na{\in}Z(k)$, i.e. $n[a,b]_k=[na,b]_k=0$.

LEMMA 9

If N is a commutative ideal in R and R satisfies $(I)'_n$ then for each $a \in N$, $b \in R$ there exists a positive integer k=k(a,b)>1 such that $[[a,b]_{k-1},\ b^n]=0$.

PROOF. Let $a \in N$, $b \in R$. By $(I)'_n[a,b] = 0$ or for some integer k > 1, $(a+b)^n - b^n \in Z(K)$. But $[(a+b)^n - b^n, a+b] = -[b^n, a+b] = [a,b^n]$, thus

 $(a+b)^{n}-b^{n}\in \mathbb{Z}(k)$ implies that $[[a,b^{n}], b]_{k-1}=0$, i.e. $[[a,b]_{k-1},b^{n}]=0$.

Now we are ready to prove our Theorem.

PROOF OF THE MAIN THEOREM

- (1) see Lemma 5 and [3, Theorem 1(5)].
- (2) In view of Lemma 6, it suffices to show that if R is a local ring satisfying (i), (ii), (I)_n and Q(n) then it is commutative. For any $a \in N$, $b \in R$ by Lemmal and Lemma 8, there exists a positive integer k such that $n[a,b]_k = 0$. Thus by Q(n), $[a,b]_k = 0$ hence R is commutative, by (1).
- (3). By Lemma 6, we may assume that R is a local ring satisfying (i), (ii) and (I)_n for a prime number n.

Now, if N is contained in Z then by a well known theorem of Herstein [2], (ii) impliess that R is commutative. Suppose that N is not contained in Z then, by lemma 4, there exists a prime number p such that Char. $R = p^{\alpha}$, $\frac{R}{N} = GF(r)$ where $r = p^{\beta}$.

Let $a \in \mathbb{N}$, $b \in \mathbb{R}$. Using (1) it suffices to show that there exists a positive integer k such that $[a,b]_k=0$. To prove this we consider the following two cases:

Case(1) $n \neq p$ (recall that p is a prime number). By Lemma 8 there exists a positive integer k such that $n[a,b]_k = 0$. But n and P are relatively prime, and Char $R = p^{\alpha}$; hence $[a,b]_k = 0$.

Case (2) n=p. Let $c=(b)^{p\beta-1}$ then $c^p=b^r$ where $r=p^\beta$ and $\frac{R}{N}=GF(r)$ hence $b-b^r\in N$, i.e. $[a,c^p]=[a,b^r]=[a,b]$ since by (i) N is commutative. But by (I)_n, there exists an integer k>1 such that $c\in Z(k)$ or $(a+c)^n-c^n\in Z(k)$. Moreover, $[(a+c)^n-c^n, a+c]=[a,c^n]=[a,c^p]=[a,b]$; hence in any case $[a,b]_k=0$. This completes the proof.

(4). Let $a \in \mathbb{N}$, $b \in \mathbb{R}$. Using (1) it suffices to show that there exists a positive integer k such that $[a,b]_k=0$. But by Lemma 9, there exists a positive integer k_1 such that

$$[[a,b]_{k_1} b^n] = 0$$

Also, considering Lemma7, $(II)_m$ implies that :
$$[[a,b]_k , b^m] = [[a,b^m],b]_{k_2} = 0$$
for some positive integers k_2 and m with $(m,n) = 1$. Therefore $[[a,b]_k , b^m] = 0 = [[a,b]_k , b^n]$, for k

(iii) For each $a \in \mathbb{N}$, $b \in \mathbb{R}$ there exists a positive integer k = k(a,b) such that $[a,b]_k = 0$.

THEOREM

Let R be a ring which satisfies (i) and (ii). Then under any of the following additional conditions R is a subdirect sum of nil commutative and local commutative rings.

- (1) R satisfies (iii).
- (2) R satisfies (I)_n and Q(n).
- (3) R satisfies $(I)_n$ where n is a prime number.
- (4) R satisfies (II)_m and (I)'_n.

In preparation for proving the above Theorem, we establish the following Lemmas:

LEMMA 1

If R satisfies (i) and (ii), then N is a commutative nil ideal containing the commutator ideal of R.

PROOF

This is a well- known result (e.g.see[3,Lemmal(6)]).

LEMMA 2

If R satisfies (iii) or $(I)'_n$ then R is a normal ring.

PROOF

Let e be an idempotent element and $x \in R$. Then $(exe-xe)^2 = 0$, i.e. $(exe-xe) \in N$.

First suppose that R satisfies (iii), then there exists a positive integer k such that $[exe-xe, e]_k = 0$. An easy induction on k shows that $[exe-xe, e]_k = exe-xe$. Thus exe = xe; hence e is a centeral element in R.

Next if R satisfies (I)'_n then $(exe-xe+e)-e \in N$ implies that either $(exe-xe+e)^n-e^n \in Z(k)$ for some positive integer k, or [exe-xe,e]=0. Therefore in any case $[exe-xe,e]_k=[(exe-xe+e)^n-e^n,e]_k=0$. The rest of the proof proceeds as above.

LEMMA 3

If R satisfies $(I)_n$ then R is normal.

PROOF. The proof is quite similar to that of Lemma2.

LEMMA 4. Let R be a normal subdirectly irreducible ring. if R satisfies (i), (ii), and N is not contained in Z, then R is of characteristic p^{α} , where p is a prime number.

PROOF. See [3,Lemma 1 (8)].

LEMMA 5. Suppose that R satisfies (i) and (ii). Moreover, if R satisfies either (iii) or $(I)'_n$ then R is a subdirect sum of nil commutative and local rings.

PROOF. Obviously, if f is a homomorphism from R onto R^* , then $f(N) = N^*$ is the set of all nilpotent elements in R^* . Thus it can be easily seen that any subring and any homomorphic image of R satisfies (i) and (ii). Moreover, if R satisfies (iii) (resp. $(I)'_n$), then any subring and any homomorphic image of R satisfies (iii) (resp. $(I)'_n$). By Birkhoff's theorem R is isomorphic to a subdirect sum of subdirectly irreducible rings. Therefore we may (and shall) assume that R is a subdirectly irreducible ring. Now for each xin R, $x^m = x^{m+1}x'$ for some positive integer m and some x' in the subring generated by x. Thus $x^{m}x'^{m} =$ e is idempotent. Therefore if R satisfies either (iii) or $(I)'_n$, then by Lemma 2, e is a centeral element in R. But R is a subdirectly irreducible ring, hence e=0 or e = 1 (if $1 \in R$). On the other hand as it can be seen easily, $x^{m} = x^{m}e$; thus if R has no identity element it must be nil and therefore commutative, by (i). If R has an identity element then e=0 or e=1 implies that each $x \in R$ is either a nilpotent or a unit element in R, i.e. R is a local ring. This completes the proof.

LEMMA 6

Suppose that R satisfies (i) and (ii). Moreover if R satisfies $(I)_n$, then R is a subdirect sum of nil commutative and local rings.

PROOF. The proof is quite similar to that of Lemma5.

LEMMA 7. If N is a commutative ideal, then for all

STRUCTURE OF RINGS WITH CONSTRAINTS ON NILPOTENT ELEMENTS AND GENERALIZED COMMUTATORS

Amir H. Yamini, Ph.D.

Assistant prof.

Dept. of Mathematics

Amirkabir University of Technology

ABSTRACT

Let R be an associative ring in which N the set of all nilpotent elements in R is commutative, and for each x in R there exists a polynomial f with integer coefficients such that $x - x^2f(x) \in N$. We discuss some of the conditions on R which imply that R is a subdirect sum of nil commutative and local commutative rings, obtaining some extensions of the results of [1].

Throughout the present paper, R will represent an associative ring with center Z, and N the set of all nilpotent elements in R. Following [6], generalized commutators $[x,x_1,x_2,x_3,...,x_k]$ for positive integers k are defined as follows: $[x,x_1] = xx_1-x_1xifk=1$, and $[[x,x_1,x_2,x_3,...,x_{k-1}],x_k]$ if k>1. For $x_1=x_2=x_3=...=x_k=y$, [x,y,y,...,y] is abbereviated as $[x,y]_k$. We denote by Z(k)the set of all x in R such that $[x,x_1,x_2,x_3,...,x_k]=0$ for all $x_1,x_2,x_3,...,x_k$ in R; Z(0)=0. A ring R is said to be normal if E the set of all idempotents in R is centeral.

The purpose of this paper is to prove the following generalization of the principle theorem of [1], which is also releated to a number of recent results by Tominaga and Yaqub (e.g.see [3], [4]).

Let n be a fixed positive integer, and consider the

following conditions:

- (I) n If $x,y \in R$ and $x-y\in N$, then either $x^n-y^n\in Z(\kappa)$ or both x,y are in Z(k) for some positive integer k=k(x,y) depending on x and y.
- (I)'_n If $x,y \in N$, then either $x^n y^n \in Z(k)$ for some positive integer k=k(x,y) depending on x and y, or both x,y commute with all nilpotent elements in R.
- (II)_m For any $\alpha \in N$, $b \in R$ there exists a positive integer k = k(a,b) such that $[(ab+b)^m (ba+b)^m, b]_k = 0$ for some positive integer m = m(a,b) with (m,n) = 1.

Q(n) For any $\alpha \in \mathbb{N}$, $b \in \mathbb{R}$, n[a,b] = 0 implies that [a,b] = 0.

- (i) N is commutative.
- (ii) For each $x \in R$ there exists a polynomial f(x) with integer coefficients such that $x x^2 f(x) \in N$.