| | | |
0O 2 4 6 8 10

- X/t

Fig. 3b Distribution of wall temperature along its
axis of symmetry (Y = 0) for L/t = 5 and
Kz/Kl 21,4,20.

NO FIN

0 2 4 S 8 10
- X/t

Fig. 3¢ Distribution of wall temperature along its
axis of symmetry (Y = 0) for L/t = 10 and
KQ/KI = 1,4,20

14/ AMIRKABIR



Table 4: The maximum error in temperature (T-Tw) /(T - Tw), and rate of heat
transfer,0,Caused by the one-dimensional analysis of fins.

Hax. error Location of Han. error Efficiency Error in
LAt KZIKL in Teap.,% it i 20 4,1
? 1 32.8 0.5%,0.3 2.67  2.40 2.7
2 53.6 (0,5%1.5,0.9 3,01 3.3% 183
P 2 ol £6.3 (0,00, (1-2,0.3) 4,76 3.8 259
i i 22.4 {g,0) 5.47 &74 40
5 3 34,9 (0,0 9,21 9.03 2.0
5 il 40,6 10,0}, (4-5,00, 10,58 10,78 -9
13-5,0,7%,11.5-5,0.8)
1 i | 13,7 (0,0 .76 1516 -13.8
10 4 23,3 {10,0.5) 17,84 2194 -18.7
1 2 9.4 {10,0-0,5) 20,26 I7.58 -4k
3.2
2.6
T T°° 2.0
b ® NO FIN
1.4 /K L/t=2
27 ™
A
0.8 5
20 | ! |
O 2 4 6 8 10

=X/t

Fig.3a Distribution of wall temperature along its
axis of symmeny (Y = 0) for L[t = 2 and
K/K = 1,420
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Y/t

Fig.2 Distribution of wall surface temperature
(X =0).
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Fig.1 Schematic of the fin-wall arrangement.
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Table 3: Fin temperature distribution (T-Tw)/(T, - Tw), and the percent error of
the one-dimensional analysis for L [t and K2 /K1 = 1,4,20.

Lit = 10

¥/t 0.00 .50

Tesp. 1-D error. ¥  Tesp, {-D error, %

L84 K2/Kf = ¢
G 0.880  13.7 0.891 122
i 0.782 1.9 0.780 3.4
2 0.694 12,5 0.693 129
3 0,621 12.3 0.619 124
§ 0.559 12,0 0.558 12,2
5 0.509  1L.6 G.308  11.9
4 0.468 113 0.467 1.6
T 0.437 11,0 .43 1.3
10 0.394 10,6 0.3%¢  10.9

K2/KL = 4
9 0.826 21,0 - 0834 19.9
i 0.791 2.0 079t 2.1
y4 0.738  21.4 0.738  IL.5
3 0.729  21.8 v 0,729 21.8
4 0,704 22,4 0.704 2.2
3 0.6483 22,4 0.682 22,5
b 0.663 22,7 0.664  22.8
7 0.651 2.9 0,650  23.0
10 0.630 3.2 : LA30 23.3

K2kt = 20
¢ 0.703 4.3 0,766 41,7
i 0.691 43,3 0,691 43.4
2 .67 4.5 0.679 44,5
3 0.669 45,5 0.667 45,6
4 0.660 44,5 0.660 44,5
b 0.633 474 0,653 47.4
& 0.646  48.1 0.646 48.1
7 0.641 48,6 0.541 48,7
10 0.634 494 0,634 49.4
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Table 2: Fin temperature distribution (T-Tw)/(Ts - Tw), and the percent error of
the one-dimensional analysis for L[t = 5 and K2/K1 = 1,1,20.

¥/t

it

2.0
0.5
1.¢

Yote
ol

LI b Lad P B3
% & w ® &
<

.0

e I
[

0

N

A

[OVRETC RN . QS
T Tk

0

L
a

.0

4,0
0.5
1.9
1.8
2.0
2.5
3.0
4.0
5.4

it =5
0,00 0,25 4,50
Teap. 1-D error. % Tesp. 1-D error, % Teap. 1-D error, %
KZ/El = 1
0.817 22.4 0,820 219 0,835 19,7
0,727 .1 6,725 1.3 0.728 221
f.644 20,8 0.643 211 6.438 22,0
0.574 2.6 0.572  20.% 0,568 Z21.8
0,314 0.3 5,513 2004 0,508 21.%
0,465 2001 0.404  20.4 0,860 21,3
0.425 18.%7 0,424 20.2 0,421 2L.1
0,369 19,5 0,368 19.8 ¢.365  20.7
0. 342 i9.4 0,341 19.7 0.338 20,4
K27k = 4
0.741 34,9 0,747 34.6 6.75%  32.8
0,712 343 8,712 3.3 0.711  34.5
0,688 34.3 0,683 34.3 0.682 3.b
0.638  34.3 0.657  34.4 0,656 4.6
0.636 343 0,635 3.4 0,634 4.6
.61 343 0,616 344 0.615 34,7
G800 34.4 0,800 34.4 0,599 4.7
8.577 344 0,577 345 0.576 347
0,566 34,4 0.566 3.3 0.564 34,7
K2/K1 =20
0.711 30,6 0,712 40.5 0,715 40,0
0,705 40,4 §, 705 40.4 0,705 805
0,598  40.5 0.698  40.3 4,698 40,5
0,697 A0.5 0.6%7  80.5 0,692 404
0.687  40.% 0,687  40.5 0.687 40,
0.683  40.5 0.683  30L3 4,682 405
.67 425 0,679 A0L4 0,679 405
0.679 40,6 0,673 40,6 4,673 A0S
0,671 0.5 G.671 40.% 0.670  40.4
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Table 1: Fin temperature distribution (T - T) /( Ty, - Ta), and the percent error of
the one-dimensional analysis for L [t = 2 and K2 /K1 = 1,4,20.

¥/t 4,00 0,23 0,50
Temp, -0 error, ¥ Tepp., 1-D error, % Tesp. 1-D error, I
1/t E2761 = §
0,06 0,773 29.5 0,775 29,2 0TI Zh.b
0.25 0,670 76,7 D.h64 0 7.7 G641 32,7
0,50 0.97% 5.5 0.568 77,1 0.544 32,8
0,75 0.4%6 74,8 0,489 2.7 0,867 3206
Log 0,431 24,4 6478 2,7 0,405 32,2
LI 0,37 .0 0,372 5.9 0.35 3.8
LA 0,337 237 4,337 5.5 6,317 3.5
1,75 73,4 0,301 75,3 0,287 3.7
200 2.4 0,779 25.7 0.2647 3.7
K206l = 4
0.00 0,657 53,4 4,658 52,8 0670 49,4
6,75 0,619 57,0 BN RIS 0,615 531
050 D,BR7. 5t - - 0,505 52,0 6,579 53,4
0.75 0,558 %13 ¢.555 51,9 0550 ¢ 53,4
£.00 0,534 51,3 0.537 51,8 0,525 53,4
175 0513 51,7 0,511 5.8 0.505. 514
150 0,49 51,7 4,494 51,8 0,488 53.4
1.7% 0,483 51,7 9.481  5l.8 0.476 51.5
.60 0474 51,7 4,472 ¢ 51,7 0,467 535

K2/K1 =20

0,602 &6.1 © B80T 64.8
0,598 - 859 T U 0.594 b
0,587  £5.9 <0586 bk
0,580 659 .. 0,579 44.2
0,574 §5.9 0,573 84,3
0,570 65.9 , 0,568 66.3
0.566 659  0.564 863
0.563 - 65.9 0.561 66,3
0,560  65.9 0.559 64,3

o
o
Honf

Wi

0. 401
0,594
0.50 . 0,587
8,75 0,581
100 0,575
125 0,570
1,50 0,566
175 0.563

SA00 0,56

o

o
LN RN oaoon
"

[ gl -
E-"r.ﬂuvm
mo:)m\r\.;-q'zn

[ el
rn
"
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fin-to-thickness ratio L/t and the fin-to-wall thermal
conductivity ratio X = K,/K; are increased. It was
further shown that the temperatures predicted by the
one-dimensional model were in error, and in the range of
parameters considered in this study, the temperature
errors varied from 10.6 to 66.3 percent. The largest error
occurred at (L/t, K) = (2, 20), while the smallest one
corresponded to (10,1).

Two dimensionality of heat transfer also affects the
rates of heat transfer. At lower values of L/, the
one-dimensional analysis overestimates the rate of heat
transfer, while at higher L/i the converse is true. The
errors in Q ranged from +259 to -46.1, ~which
corresponded to (L/t, K) = (2, 20) and (10,20),
respectively.

When the temperature field within the wall was
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to remove the fin.

Efficiencies given in Table 4 are all larger than unity.
This indicates that the range of parameters selected for
the present investigation were realistic, and the fins
actually increased the heat transfer.

With this definition of fin efficiency and under the
optimizing condition of equation (4), it is found that
longer (and therefore thinner) fins have a better
efficiency. It should be emphasized that this conclusion
applies strictly to the fins which obey the restricting
conditions set forth by equations (4) and (6).

The ecffect of thermal conductivity ratio K on
efficiency is similar to that of L/z. At lower values of K,
this effect is stronger, but as K is increased, its improving
effect on efficiency is diminished.

‘The last column in Table 4 shows the errors of
one-dimensional analysis in predicting the heat transfer
rates. At lower values of L/r, the one-dimensional
analysis Overestimates the rate of heat transfer, while at
higher L/t, the converse is true. In the range of
parameters considered in this investigation, the error in
Q ranged from +259 to —46.1 percent, which
corresponded to (L/t, K)=1(2,20)and (10,20,
respectively.

Another aspect of the present problem is concerned
with the manner in which the temperature field inside the
infinite wall is affected by the presence of the fin. In this
regard, Figs. 2 and 3a-c have been prepared to indicate
the temperature distribution throughout the wall.
However, to simplify the presentation, temperatures are
only given along two particular paths, namely, along the
convective surface X = 0, Y > 0,and along the symmetry
axis of the wall identified by X < @ and Y = 0.

Attention is first focused on Fig.2, where the wall
surface temperature is given along the vertical line Y0,
and L/t and K appear as parameters. It is seen that the
three family of curves identified by L/t = 2, 5, and 10,
have a common behavior. At the fin base (X =0,0<
Y/t< 05), the temperature is depressed,with - the
temperature depression varying from [T ,0) -
Tw]/(Ty = Tw) = 0.601 to [T(005) — T (T, ~
T} = 0.891. These values correspond, respectively, to
(L/tK) = (2,20) and (10,1). Further away from the fin

6/ AMIRKABIR

base along the Y, the surface temperature increases and
approaches the base temperature of the one-dimensional
model 7.

In general, wall surface temperature depends, in
addition to distance from the fin, on two parameters L /t
and K. As L/t is increased, the base temperature
experiences more depression, since the rate of heat
transfer increases with L/t and the temperature
gradients at the base become larger. The ratio of thermal
conductivities K have also a similar effect.

Figs. 3a-c have been prepared to show the
distribution of wall temperature along the line of
symmetry. In these figures, the ordinate is the
dimensionless temperature [T(X,0) — To]/(Ty — Te)
and the abscissa is the distance from the origin along the
negative X direction normalized by the fin thickness,
ie,—X/t.

Also shown in these figures are the temperaturc
distributions for the bare wall, which have been identified
as "NO FIN". It is clearly seen that the temperature
distributions for the no-fin case are exactly linear, they
start at (T — To)/(T, — Tow) = 1 and increase
continuously as getting away from the surface.

The results of the two-dimensional analysis, which
are shown by the lower set of curves, indicate that they
are markedly different from those of the no-fin situation.
Here, the temperatures depend on both L/t and K.
Considering the change of scale on the vertical axis, a
careful examination of the curves reveals that the effect
of L/t on temperature distributions is negligibly small.
However, the effect of thermal conductivity ratio is
important, and it appears that the temperature
distribution in this region is governed only by this ratio.

CONCLUDING REMARKS

The numerical calculations of the present work have
provided a definitive set of results for two-dimensional
heat transfer through an isolated rectangular fin attached
to an infinite solid wall. It was shown that the predictions
of the conventional one-dimensional analysis of heat
transfer through fins might involve large errors.

‘It was found that a temperature gradient exists across
the thickness of the fin which decreases as the



obtained results indicated that the largest difference was
0.07 percent, and it occurred at a point located on the tip
of the fin.

RESULTS AND DISCUSSION

Attention is first focused on Tables 1 to 3 where the
fin temperature distributions are presented for a number
of selected points. An overall examination of the
temperatures indicates that at a fixed X/r, the
dimensionless temperatures generally decrease with
increasing Y/t. The points located at the fin base, i.e., X/t
= ¢, are exceptions 1o this rule. In fact, in order to have
convective heat transfer from the surface of the fin to the
surrounding fluid, there must bc a transverse
temperature gradient at each cross section across the fin.

The temperature gradients across the {in depend on
two parameters, the length of the fin, L/t, and the
thermal conductivity ratio, K = K:/K;. Inspection of the
resuits indicates that as L/r and K arc increased, the
temperature gradients are decreased. It should be noted
that the results reported here are for optimum fins which
obey the optimizing condition expressed by cquation (4).
According to this equation, larger vatuecs of L/timply a
smaller Biot number and, thus, a smaller temperaturc
gradient across the thickness of the fin.

As mentioned earlier, the one-dimensional treatment
of fins involves an oversimplified model which ignors
certain basic facts about heat transfer. These facts are (1)
two dimensionality of heat transfer, (2) depression of the
base temperature, and (3) the effect of the different
thermal conductivity of the parent wall. In this
connection, it would be highly desirable to explore the
extent of errors caused by this simplified model. Tables 1
to 3 compare the two situations and present the percent
of errors for the one-dimensional model. A careful
examination of the results indicates that the errors
caused by the one-dimensional analysis range from 10.6
to 66.3 percent which correspond, respectively, to
( X/tY/tL/tK) = (100101 )and (I — 205220 ).
The significant 66.3 percent temperature error becomes
especially important when designing a finned surface
from the standpoint of the highest permissible
temperature. In this regard, any unrealistic prediction of

temperature may lead to a partial or complete burnout
of the device.

Also from these tables, it is observed that, at a fixed
K, the errors of the one-dimensional analysis decrease
with L /1, which indicates that at higher L/t the heat
transfer behavior becomes onc-dimensional. Moreover,
for a given L/t, as K is increased a larger difference is
observed between one- and two-dimensional predictions.
It is believed that higher values of K reduce the thermal
resistance along the fin, enhance the rate of heat transfer,
and thus depress the temperature at the {in base. Since
the one-dimensional model docs not account for this
temperature depression, it is expected to see larger errors
at higher valucs of K.

Tablc 4 presents a concise comparison of the results
of this study with those of the common one-dimensional
analysis. As scen from the values given in the third
column of the table, this maximum temperature ¢rror
ranges from 13.7 to 66.3 percent. Also it is noticed that,
in general, the maximum crrors decrease with L/,
indicating that at higher values of L/t  the
one-dimensional heat transfer is dominant. However, the
thermal conductivity ratio K has the opposite effect. It
appears that the two dimensionality of heat transfer
through fins is governed by two conflicting factors; one is
the effect of L /1, and the other is that of K. The fourth
column of the table specifies the locations of maximum
erTors.

Also shown in Table 4 are the values of fin efficiency
for both one-dimensional and two-dimensional models.
The efficiencies were calculated from the defining

equation:

n=Q/[hA (T, = Tw)] (6)
where Q is the real rate of heat transfer from the fin, and
A is the cross sectional area of the fin for heat
conduction. Clearly, the expression in the denominator is
the rate of heat transfer from the base area when the fin
is absent. Thus, the above definition of efficiency is
particularly useful when we want to know whether the
attachment of fin to the surface of the wall would
increase heat transfer. A value of n larger than unity
means that the presence of the fin is introducing more
resistance on the path of heat flow, and it would be better

AMIRKABIR /5




Thus, the two parameters Bi and L/t are dependent, and
the present solutions depend only on L/t and K, with the
corresponding values of Bi obtained from equation (4).
Equations (1) to (3f) were solved numerically.
Referring to Fig.1, the finite difference equation for any
internal point in the solution domain such as point 12 can

be written as :
om," = 0.25 (0m+1,n + om-l,n + 9m,n+l + 9m,n-1) (50)

The subscripts m and n» indicate, respectively, the
horizontal and vertical positions of the nodal points.

For the boundary nodal points 1 to 8, the
finite-difference equations are derived separately as

follows:

points 1 and 2:

. =1 — Bik},.. (5b)
point 3:

Opon = [1 /(2 + BisAX/1 )]( Opnt1 + On-1n)  (5c)

point 4:
O = 0.5[1 /(2 + BidsX/1 )]( 26,,_; .+ (5d)
Orn—1 + Ot )
point 5:
VO,,,,,, ={1/[2 + (Bi, +Biz) Ax/t ]} (9,,,,,,_1 + 0psn)
(5e)
point 6:
On = 05[1 /(2 + BiAX/t)] X
(On—tn t Opi1n + 20,,1) (5N

point 7:

O = {1 /[2 + K+ 0.5 (Bi; + KBiy) AX/t ]}

[0-3.+05(1 +K)6;,_; +050,,,, + 0.5K0,, ]
(38)

point 8:

0, = 0.5[1/(2 + Bi;AX [ )]
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(20t1n + Ot + 0pynsr) (5h)

For the internal points like 9, we take advantage of
symmetry and obtain,

point 9:

O = 0.25 Ot + Oy + 26, 11) (51)
Similarly, for interface points 10 and 11 we have,

point 10:

010 = 0.5[1/(1 +K)] (03 + Kby1) + 0.56,,,4, (5))
point 11:

b1, =05[1/(1 +K)] (0_,, + K0,,) +
0.25 (O1nys + Opy) (5k)

In these equations, the Biot numbers are defined as
Bi; = hi/K;, Bi, = hy/K, and Bi; = hst/K;. In
equation (5b), the variable £, is the value of X, /t for the
nodal point (m,n) at points like 1 and 2, and it is a
negative number. Also, the problem was simplified by
assuming that o; = h, = hz and, therefore,

Bi; = KBi, = KBij.

"The solutions of equations (5a-k) were performed on
a UNIVAC computer, using the Gauss-Seidel iterative
method. The total number of grid points was around
7000, which depended on the selected values of L/t
These grid points were dispersed throu ghout the solid in
the region Y = 0, encompassing the upper half of the fin
and the wall. The computer runs were carried out for
L/t = 25 and 10withK = 1, 4 and 20.

In order to examine the effect of the number of grid
points on the accuracy of the solutions, the values of
temperatures for 1708 — and 6646 —grid point runs were
compared. It was found that the maximum difference in
temperatures did not exceed 1.03 percent.

Another source of error is associated with the
termination of the iterative procedure. In this
connection, two additional computer runs were
performed. In the first run, the computations were
terminated when the temperature difference between
two consecutive iterations did not exceed 10°%, while in
the other run the maximum difference was 0.5x107. The



The above-mentioned references have all been
concerned with the behavior of isolated fins and have
totally ignored the effect of any neighboring fin that
might be present. The subject of multifin arrays has been
treated by Sparrow and Lee [11], and also by
Suryanarayana [12].

Despite of the rather simple appearance of the
problem, research in the area of two-dimensional heat
transfer still continues. Perhaps one of the most recent
papers on the subject is that of Look [13]. In his work,
Look has provided additional insight into the effect of
two dimensionality on fin performance and has studied
the effects of unequal top, bottom, and tip surface
convection coefficients.

The rectangular fin of the present investigation is
shown schematically in Fig.1. As seen, the surfaces of the
infinite wall and the fin are exposed to a convective
environment with heat transfer coefficient h. In general,
the convective coefficients are different for various
surfaces, and the symbols Ay, /i, and hs indicate the
convective coefficients for the wall, top (or bottom),and
tip surfaces of the fin, respectively.

In real problems, the thermal conductivity of the wall
k; is often quite different from that of the fin material k.
As will be seen later in this paper, the effects of
employing fin materials differing from that of the wall can
be significant.

The problem was solved by a numerical procedure 10
be explained shortly. The ratio of thermal conductivities,
k = kofk;, ranged from 1 to 20, and the
length-to-thickness ratio of the fin,L/f, was equal (0 2, 5,
and 10.

FORMULATION OF THE PROBLEM

Heat conduction in the fin and in the wall is governed

by Laplace’s equation:
0 4 ¥ =9 (1)
¥& o

where the dimensionless temperature 6 and the
coordinates & and » are defined as:

9=_T_£E;,C=£,q=_}f_ (2)
Ty — T t !

The coordinates X and Y are shown in Fig.1. In equation
(2), T Is the temperature of the surrounding fluid, and
T, is the temperature of the exposed surface of the wall
in the absence of the fin.

Considering the symmetry in Fig.1, the boundary
conditions to be satisfied by equation (2) are written as:

0 4B =0a(E=0,n=05)and

o (E =L/t,089=05) (3a)
0 4 Bif = 0ar (0<E<LJt,n =0.5) (3b)
on

0 = par( —oc0<E<0,n=0)and

(0<E<L/t,n=10) (3c)
O@=1-Bifat(—0<€s0,n= »)and

(&—_— —00 )=y < o) (3d)
0|, =0|,at(&=0,0sn<05) (3e)
90 ) — w00 -

L1 =KZ l,at (& =0,0<n<05 3
o ¥ P |zat (& n ) (3

In these equations, the Biot number is defined as
Bi = hit/k, and K is the ratio of thermal conductivities,
namely, K = K,/K.

Equation (3d), which was derived from a
one-dimensional consideration of heat conduction, is
applicable to the points located very far from the fin
where the presence of the fin does not disturb the
temperature field. In this problem, the distant points
were approximated by the points located along the
boundary lines ab and be (Fig.1) withx/t = 10 and Y/t =
10. To examine the validity of this approximation, the
calculations were repeated for X/t and Y/t = 20, and the
results indicated that the maximum difference in
temperatures was only 0.6 percent.

From equations (1) to (3f), it is revealed that the
solutions, 6(&,;), depend on the values of three
parameters, Biot number Bi, dimensionless length of the
fin L/t, and thermal conductivity ratio K. In fin design,

however, it is a usual practice to optimize the straight

rectangular fins by the correlation [5}

Bi(Lit) =1 (4)
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(or bottom) surface of the fin

hs; Convective heat transfer coefficient for the tip of
the fin

k  Thermal conductivity in the definition of Biot
number

K Thermal conductivity ratio, K = K;/K;

K; Thermal conductivity of the wall material

K; Thermal conductivity of the fin material

L  Finlenght

Q Realrate of heat transfer from the fin

t  Fin thickness

T Temperature

T, Wall surface temperature in the absence of fin,
base temperature in the one-dimensional analysis ‘

T Temperature of the surrounding fluid

X Horizontal coordinate ( Fig.1)

Y Vertical coordinate ( Fig.1)

AX Incrementin X

Greek Symbols
1 Dimensionless vertical coordinate, 7 = Y/t fin
efficiency
0 Dimensionless temperature,
0= (T —-Tx)
(Tpy — T )

8,.» Dimensionless temperature at the nodal point
(mn)

& Dimensionless horizontal coordinate £ = X/t

&,..» Value of £ for the nodal point (m,n)

INTRODUCTION AND
BACKGROUND

Fins are usually employed on hot surfaces where heat
transfer coefficient is poor and the bare surfaces are
unable to transfer enough heat to the surrounding fluid.
The main function of a fin is to increase the surface area
and, thus, to enhance heat transfer.

There are a large variety of applications where fins
are employed to improile heat transfer. Some common
examples are the automobile radiators, air conditioners,
refrigeration units, electric transformers, air-cooled
aero-engines, and forced-draft air-fin coolers [1]. In
designing these devices, fins are treated by a simplified
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model where heat transfer is assumed to be
one-dimensional. The assumption of one-dimensionality
may not be always justified and, in certain situations, it
might result in serious errors in  the predicted
temperatures and heat transfer rates.

Another common assumption in fin analysis, which is
encountered in almost every heat transfer textbook [2-5],
is that the temperature at the fin base is constant and is
equal to the temperature of the surface when the fin is
absent. In reality, when a fin is attached to a surface in
order to enhance heat transfer, a temperature gradient
appears in the vicinity of the fin base, and the base
temperature is depressed. This temperature depression
can seriously affect the distribution of temperature
throughout the fin and alter the rate of heat transfer.

The present work is concerned with the study of
two-dimensional effects on heat transfer from a single
rectangular fin attached to the surface of an infinite solid
wall. In this connection, the effect of three important
factors is considered: (1) two-dimensionality of heat
transfer, (2) depression of the base temperature, and (3)
the thermal conductivity of the fin and that of the wall to
which the fin is attached. Moreover, the solution
procedure is such that the convective heat transfer
coefficient around the fin and that of the wall could be
treated as variable. However, to simplify the problem and
to reduce the number of variables, we employed a single
constant  convective  coefficient  throughout this
investigation. Furthermore, the solution domain was
extended to encompass the portion of the solid wall
where the temperatures have been affected by the
presence of the fin.

There are a number of related studies in the
published literature[6-12]. One of the earliest
investigations were carried out by Avrami and Little {6]
who studied the cooling and insulating effect of
rectangular fins. Irey [7], and Wah Lau and Tan {10]
have reported their results regarding the errors that
might occur in a one-dimensional analysis of pin fins and

annular fins. Apparently, temperature depression at the
base of a single rectangular fin was. first addressed by
Sparrow and Hennecke [8] and, later, by Klett and
McCulloch [9].



TWO-DIMENSIONAL EFFECTS ON HEAT
TRANSFER FROM AN ISOLATED
RECTANGULAR FIN

M. Molki Ph.D.

Associate Professor
Department of Mechanical Engineering
Esfahan University of Technology

and

M. Sefid Ph.D.

Yazd University

ABSTRACT

An analysis was made of the two-dimensional heat transfer ina straight rectangular
fin which was attached to an infinite solid wall. Temperature distributions in the fin and
in the wall, and also the rate of heat transfer were obtained numerically. In the course of
calculations, the length-to-thickness ratio of the fin, L/t, ranged from 2 fo 10,while the
fin-to-wall thermal conductivity ratio, K = K2/KI ,took on values of 1,4, and 20. A
comparison was made between the one-dimensional and the two-dimensional analyses,
and the errors of the first were discussed. It was found that the temperatures predicted by
the one- dimensional model could be in error by as much as 66.3 percent. Further, it was
shown that the one-dimensional model either overestimated or underestimated the rates
of heat transfer, with the numerical values of errors ranging from +25.9 to -46.1 percent.

NOMENCLATURE Bi; Biot number defined as ht/K;

A Cross sectional area of the fin normal to X axis h  Convective heat transfer coefficient

Bi Biot number,Bi = ht/k h; Convective heat transfer coefficient for the wall
Bi; Biot number defined as ht/K; surface

Bi, Biot number defined as hzt/K 5 h, Convective heat transfer coefficient for the top
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