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Table 1. Comparison of Robot Dynamics Formulations for n = 6

Author Method Multiplications Additions

Uicker/Kahn Lagrangian dynamics (4X4) matraices 66, 271 51,548
Waters Backward Recursion Lagrangian dynamics 7,051 5652
Hollerbach Forw;zrd Recursion Lagrangian dynamics 4388 3586

(4X4
Hollerbach Forward Recursion Lagrangian dynamics 2,195 1,719

(3X3)
INewton-Euler  Recursive Newton-Euler dynamics 852 738
Kane/Levinson Kane dynamics 646 394
Raibert/Horn  Configuration Space Method (CSM) 468 264
Yang/Tzeng Dynamics simplification by design 72 34+4(trig. function)
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by examining the complete expanded version of
Lagrange’s equation to redesign the link’s inertia pro-
perty, including inertia, mass, and the location of
the center of mass. This results in elimination of all
the potential energy terms and about 90 percent of
the kinetic energy terms. And further, the coefficients
of most of the nonlinear terms in system’s dynamic
equations become zero. For a detailed design metho-
dology the reader is refered to [7]. As a result of
simple design technique, for a six link arm, 34 + 4
(trigonometrical functions) additions and 72 multi-

plications are required.

9. COMPUTER GENERATION OF ROBOT
DYNAMICS EQUATIONS

As it has been witnessed from the brief overview
of the literature, the dynamics problem of manipu-
lators have attracted considerable research and several
techniques have evolved. Recent
developments in this area include the computer gene-
ration of robot dynamics equations [13, 20, 29-30].
In recent years, several algorithms for generating dy-
namical equations for manipulators have been deve-
loped. Most of these algorithms are based on Lagrange’s
equations [24-28], or the Newton-Euler method [10-
12]. Furthermore, a computer oriented technique
based on the Kane’s equations is developed in [20]
that facilitates the formulation of dynamics equations.
However, since an efficient implementation most often
requires explicit equations governing a specific type
of manipulator, only a few programs have been deve-
loped that generate dynamics equations in symbolic
form, Therefore, this area shows great potential for

future research and development.

10. CONCLUSIONS

A comparative look throughout the above dis-

cussion enables future researchers to recognize the

advantages and disadvantages of the various tech-
niques. The forward and backward recursive equations
reduce the number of computations for the generalzed
forces. Setting up the dynamics via (4x4) matrices
are inefficient because of their requirement for com-
bining translation with rotation. Reformulation of
the dynamics equations via (3x3) rotation matrices
to specify the orientation of the links and displace-
ment vectors to represent their position improves
the computational efficiency a great deal as shown
in Table 1.

Although, the Newton-Euler approach has attrac-
ted much interest in the formulation of manipulators
dynamics equations, in 1982, Silver [29], shows that
there is, in fact, no fundamental difference in compu-
tational efficiency between Lagrangian and Newton-
Euler formulations. The efficiency of the New-Euler
formulation is due to two factors: 1) the recursive
structure of the computation, and 2) the represen-
tation chosen for the rotational dynamics. Where
both of these factors can be achieved in Lagrangian
formulation. In doing so, Lagrangian dynamics is for-
mulated based on the angular velocity vector w ins-
tead of the derivative of the rotation matrix T. This
is done due to the fact that the angular motion of a
rigid body could be described equally well by either
of the two.

The Configuration Space Method {CSM) is the
most efficient formulation for n < 9 joints. Although
there is still an n3 dependence for the additions and
multiplications in the scheme, the much smaller co-
efficients on the ploynomial terms represent a greatly
reduced computational cost. In application to large
arms with powerful actuators and large link masses,
configuration space memory (CSM) can increase the
maximum velocity without adversely affecting the
stability control resulted by uncompensated time
’varying inertial terms or non-linear velocity dependent

terms.
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equations involving the joint force and moment com-
ponents which are clearly a convenience for solving
the inverse problem of computing these components
when the system kinematics is known. For a six link
robot manipulator this technique has shown to re-
quire only 394 additions, and 646 multiplications,
which shows a great computational efficiency in

comparison with the previously discussed methods.

7. THE RAIBERT/HORN CONFIGURA—
TION SPACE METHOD

A method of evaluating the equations of motion
that makes real time compensation for all important
terms possible is presented by Raibert and Horn[9].
They proposed a control method that explicitly com-
pensates for configuration - dependent gravity, acce-
leration, and velocity forces which become especially
important during rapid simultaneous motions of a
number of joints. The configuration space method
(CSM) is derived from the Lagrangian dynamics

formulated as:

n n o n
T i = G;la) +j§1 D (g)aj +j§=;1 ':43:1 Cijk (g)djdk
' (163
Where, T represents the motor torque acting on the
ith joint. And Gi is the gravitational force acting on
the ith joint. A coefficient of the form Dii is the
inertial force acting on the ith joint as a result of ac-
celerations of the jth joint (coupling inertia). Finally,
coefficients of the form Cijk are velocity dependent
forces acting on the ith joint as a result of rotations
about the jth and kth joints (coriolis coefficients).
‘Equation {(16) can also be written in.matrix form as:
[4t.cyta). 4

T=Glq) +J(a).q + clt. Cyla).

12

(479

[EeRS

a".Cola).q |
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Where, Tand G are n-vectors, | and each C;are {(nxn)
matrices. Although these equations are very compli-
cated, but it is noticable that each of the coefficients
in the equations (17), G, J, and the C;'s, is only de-
pendent on the configuration of the arm. Rather than
computing these coefficients each time they are
needed, the (CSM) approach is to look them up in
a pre-defined, multi-dimensional memory organized
by these positional variables. Furthermore, a space
that has one dimension for each joint of the mani-
pulator is defined where each point in this space cor-
responds to a configuration. Then a multi-dimensional
memory corresponding to this configuration space is
created where the values of the above coefficients can
be computed and stored for use whenever the equa-
tions of motion are to be evaluated. Formulations
based on (CSM) offer an efficient way of dynamics
calculations for a manipulator with n ¢ 9 joints, For
a six link arm formulated by (CSM) 264 additions,

and 468 multiplications are required.

8. THE YANG/TZENG SIMPLE DESIGN
METHOD

In 1986 Yang, and Tzeng [7] introduced a new
approach for designing simple manipulators with
better dynamic behavior. This technique obviously
differs very much from the previously discussed
methods. Development of this is based on elimination
of coefficients of nonlinear terms in the robotic sys-
tem’s potential and kinetic energy equations, Further-
more, a set of design criteria regarding the links
inertia distribution may be established for different
types of manipulators. As a result, a robot design
based upon these criteria will have much simplified
dynamics characteristics. They have shown that for
some configurations of three and four link manipula-
tors, it is possible to design the robotic structure so
that completely linearized dynamic equations are the
results. They further improved the robotic structure



n and then by applying the Newton-Euler equations,
the total force vector F; and the total moment vector
N; acting on each link i are computed (backward re-
cursion). In the second step, forces and torques of
interaction and joint actuator torques are determined
recursively from link n to the base of the arm (forward
recursion). The general algorithem for the case where
all joints are revolute is given below [4], and for
sliding joints the reader may refer to Shahinpoor [6].
This formulation has shown to require 852 multiplica-
tions and 738 additions for a six link manipulator
arm. Because of its efficiency, it is widely used in the

formulation of robot manipulator dynamics.

Backward Recursions:

@Dt g g

02;=9;_1+z 1qi+(.a) 1+7Z; 1ai

f’i:é‘) X ~|’w X(w:Xp)-&p{ 1

5=, X (¥ Xr, ) +@; X + B,

By =Mt

N = 1°w. +w. X (1% w;)

~i o~ i 1=

Where
wi ¢ is the angular velocity vector of link i
5) i is the angular acceleration vector of link i
Fi is the total external force vector on link i
N; is the total external torque vector on fink i
1. is the inertia tensor of link i about its

center of mass

Forward Recursion:

i1y =F +i
5 Tir1 .
i =i X XE +px
i=1n =i, ¥ Ny HPp AR XE B X Dy
~1 -1
Ti=z

1"‘

i-1¢ . the force exerted on link i by link i-1 re-

fered to base frame

i-1 i the moment exerted on link i by link i-1,
refered to base frame
T. : is the input actuator torque at the joint i,

A more efficient formulation of this technique is
obtained by referring to local link coordinates
rather than the global base coordinates [4] &[6].

6. THE KANE’S METHOD

In 1982 and 1983, Huston and Kelly [19], and
Kane and Levinson [21] applied the oroginal Kane’s
dynamical equations [23] to robot manipulators and
generated sets of dynamics equations. Their technique
employs the Euler parameters and relative coordinates
[22], partial velocities and partial angular velocities
[23], and generalized speeds [24] in the development
of the governing manipulators dynamic equations.
This is an ‘“algorithmic” approach extensively dis-
cussed in [19] and [20] leading to governing equations
whose coefficients are readily evaluated by computer
subroutines. It has the advantage of automatically
eliminating “nonworking” internal constraint forces,
without inclusion of tedious, and often unwieldy,
differentiation of scalar energy functions and other
similar manipulations. Relative coordinates are used
to conveniently and efficiently define the system con-
figuration, whereas the Euler parameters are used to
define the robotic system orientation, The use of
partial velocities and partial angular velocities leads to
efficient computation of the generalized forces
needed for Kanes dynamical equations in which their
components also form the elements of the coefficients
of the governing differential equations. And finally,
the implementation' of generalized speeds leads to
dynamic equations which are in “canonical” form,

and can readily be adapted to commonly used nume-

rical integrators. Furthermore, it will decouple the
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Fig. 3. Kinematical notations on a single link

ri* =  avector connecﬁng the origin of frame i
to mass center of link i,

P; = a vector from origin of the base frame
to the origin of frame i,

P? = a vector connecting the origin of frame
i-1 to origin of frame i,

'?i = same expression as equation (6}, but with
(3 x 3) rotation matrices,

*

gi {i / mi;“ i *

b = Fa =T . .
The final recurrence relation of the equation (10) is
written as:

d oT; :
ﬁ=ﬂP_—Dﬂ~g3mq+m@ (11)
i g;
Where

. A “ t “ t
D;i = At Ditg HPiv S *in B i T (12)

&= &pp +mp+ ‘nit ?it (13)
and d; has the same expression as equation (9), but
with (3 x 3) rotation matrices. With this formulation
(3 x 3) matrices, the size of the coefficients of the

comple);ity polynomial is reduced to more than 50%
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of the forward recursive lagrangian formulation with
(4 x 4) matrices. This will result in 2195 multiplica-
tions and 1719 additions for the case of a six link

manipulator arm,

5. THE RECURSIVE NEWTON. EULER
DYNAMICS APPROACH

The Newton-Euler formulation of Manipulator
Dynamics have been studied by many authors in the
past [10-16]. In this formulation each link of a mani-
pulator is treated as a rigid body with a known center
of mass and inertia tensor. Then the Newton’s second
law:

F =ma® (iq)

along with its rotational analog, Euler’s equation:
c .
NeIé+wxti®e (18)

are used to describe how forces, inertias, and accelera-
tions relate. To apply the Newton-Euler equations to
a set of kinematic chain, we first iteratively compute

the velocities and accelerations from the base to link



of link numbering direction can be expressed in a

more compact form:

n T 2T
} hod t § j | .

Fi =% (tr [ = Jj T] I - mjg —':b-a“ ri ai Qi

=i % ‘ @)
Where:
L L
T=2 5 S v Ay Ay (O

I k=1 3q, K k=1m=1 3q, da, kom

with this formulation, Velocity and acceleration rela-
tions 'i'j, and Tl are computed by straight forward

differentiation of T)- = TH Ai and therefore:

) 0A; a2Aj
=T Y VL .2
T, =Ty A+ 2T T Ty g
dq; dq;
j i
0A.
AT L 5
i—1 aqj 4 (6)

with the formulation represented by equations (4)
and (6), the real time computation of the required
forces is proportional to the second power of the
number of manipulator’s links [4,5]. Therefore, fora
six-link manpulator arm, there exist 7051 multiplica-
tions and 5652 additions to compute all torques. The
primary reason for this improvement is the more
efficient computation of the Coriolis and centrifugal
forces, (i.e. it requires that only (azTi / aqi2 ) be
calculated rather than all the matrices (aZTi /dayday,)
A forward link to link recursion of equation (4)
leads to further efficiency of the Lagrangian dynamics.
Therefore, rewriting equation (4) and noting that
aTi/aqi =(0T;/0aq; )i Tj, and iTi = |, we have:

BTj n “ s T, g -
et [ T ATATY —gt =— Z, My
Fi ”[aqi g T il =i
“ aTi aTi
i = trlz——D;l - g (===, (7)
9 9
where:
n
= . st_ 7t
Di'.zi'T; ST = 9T+ Ajrq i (8)
=
and,

n .
4=z miiTjiIfmi'li*‘Am ditq (9)
=1
In this formulation, the acceleration terms :f'it are
first computed starting from the first to the nth link.
And then the Di and d; terms are computed in the
opposite direction starting from the nth link to the
first link. In this formulation the number of multi-
plications and additions is only proportional to the
first power of the number of links, resulting in 4388
multiplications and 3586 additions for a six link

manipulator arm.

4. THE HOLLERBACH FORWARD RE-
CURSIVE LAGRANGIAN DYNAMICS

WITH (3 x 3) MATRICES
In 1980, Hollerbach [4] realized that the refor-

mulation of Lagrangian dynamics through the use of
(3 x 3) pure rotation matrices rather than (4 x 4)
rotation- translation matrices provides the greatest
reduction in computation. This is due to the fact that
(3 x 3) matrix multiplications require 27 muitiplica-
tions whereas (4 x 4) matrix multiplications require
64. The result would be a reduction of more than
50% in the coefficients of the computational terms.

In his analysis, Hollerbach used a rotation matrix
Ti to represent the orientation of link i of the robot
kinematic chain. The matrix T; transforms the com-
ponents of a vector with respect to a fixed frame, The
angular motion of ink i is therefore specified by "fi,
and Ti' Figure 3 clearly shows the kinematical notation

used by Hollerbach to obtain the generalized forces:

7

n op; dp; oT
Slet, Sl ittty L jnpt
F.=Z |trim;—— p,'+ =— 't Ty + ==+ Tn;p;
[ j=i{: YR B T R A it
ot . ¢ 0T,
o= d Tl = ™ 141 g
q; b aqi Al aii (10)
where:
r. = a vector from origin of the base frame

to mass center of link i,
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adjacent links. However, like any other mechanical
system, an open-oop kinematic chain contains a natural
set of generalized coordinates qi}which completely
specifies its position. For the case where the joint is
revolute (rotary), the joint variable is described by8;
whereas for prismatic (sliding) type joint, d; will repre-
sent the corresponding joint variable. With these nota-
tion’s Uicker/Kahn employed the general Lagrange

equation:
d oL aL
——[z—] — =1 =F; (2)
dt aqi 9g;
where
F, = The generalized forces or torques,
qg; = The generalized coordinates,
L = The Lagrangian function=K — P
K = The kinetic energy, and
P = The potential energy.

in conjunction with Denavit-Hartenberg (4 x 4) transla-
tion/rotation matrices Ti to represent the position and
motion of the kinematic chain. The matrix T; actually
transforms the components of the position vector of
a point P fixed with respect to the coordinate frame i
(moving with it) to its components in a fixed base
coordinate system, After expressing the kinetic and
potential energies of the kinematic chain in terms of
Ti’s and their derivatives, an expression for the gene-
ralized forces F; of an n-ink manipulator arm has been
derived [2—4]:

i aT]-
22 Jtr[=—1J
=1 m=1 aqi

—m.gt ——— i.V+ 2.0
m;g 3q ’_r;} la;q; (3)

m. :  massof link j,
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la, : actuator inertias at the joint (equivalent

mass for the case of a prismatic joint),

g :  Gravity vector,
J K Inertial tensor, and
i Coordinate of a point (center of mass) on

link j described inlink j’s coordinate frame.

real time computation of equation (3) has been shown
to be very slow due to the fact that the number of mul-
tiplications and additions involved in the operation is
proportional to the forth power of the number of links
[4] . Ignoring actuator inertias, in 1980 Hollerbach [4]
has shown that for a six link manipulator arm, Uicker/
Kahn formulation will result in 66271 multiplications,
and 51548 additions in order to compute all torques.
Furthermore, Luh, Walker, and Paul [11] have estima-
ted that the time required to evaluate the torques for a
point in the trajectory is about 9 seconds on a PDP—
11/45. However, the ineffectiveness of this technique
in real-time control of manipulator arms, have led the
researchers to investigate various formulations of mani-

pulator arms dynamics.

3. THE WATERS/HOLLERBACH LAGRA-
NGIAN DYNAMICS WITH BACKWARD/
FORWARD RECURSION

In 1979, Waters introduced five techniques to
speed up the calculation of the required forces. Re-
formulating the dynamic equatﬁons 50 that they could
be evaluated faster, simplifying the dynamic equations
by eliminating insignificant terms, using direct accele-
ration servoing of the arm, using exterapolation and
interpolation, and using precomputed values of the
equations are some of the methods first noticed by .
Waters [5].

Bacward Recursion from link to link formulation

of the gene’ralized forces of equation (3) in the sense



method [10—17]. Other algorithms based on Kane’s
method [17—25] have also been published in the
literature. Recent works on robot dynamics are oriented
toward the vectorial, computational, and symbolic
derivations of dynamic equations [26—37], and a new
design concept [7] which would result in manipulators
with much simplified dynamics. In the following sec-
tions we shall briefly elaborate on each of the classical

algorithms.

THE UICKER/KAHN FORMULATION
'OF MANIPULATOR DYNAMICS VIA
LAGRANGIAN METHOD

In 1965, Uicker [2] used (4 x 4) matrices to deve-
fop a general Lagrangian based dynamic algorithm
which included arbitarary spatial closed linkages. Later
in 1969, Kahn [3] was the first who applied the Uicker’s

formulation to open-loop articulated kinematic chains.

Considering the generalized adjacent links situation for
manipulators shown in Fig. 2, one can readily show
that the (4 x 4) Denavit - Hartenberg homogeneous
transformation matrix representing the position and
orientation of coordinate frame i with respect to frame
i-1 is given by:

Cosf; —Sing; Cost §ing; Sinev; @ Cosf;
Sin §; Cos@; Cose; — Cos GSinoy 3 Sing;
Tamo sine Cose; d;
0 0 0 1
(1)
where:
3 Link Length
d Link Offset
o Link Twist, and
0; Joint Angle.

are the four neccessary and sufficient parameters

which completely describe the relative position of two
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Fig. 2. Generalized manipulators link representation
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nisms with two or three degrees-of-freedom, the com-
plexity of the dynamic model is of minor importance
in the computations, but for advanced control and
design of typical industrial robots with more than three
degrees-of freedom, the development of an efficient
mathematical representation of the manipulator dyna-
mics is essential. This complication is due to the dyna-
mic coupling among the joints and the nonlinearity
arising from the continual variations in the configura-
tion and payloads of the manipulator arm. However,
it is important to note that on-ine computations are
normally required for the real-time control of robot
manipulators. And furthermore, since the forces and

torques should be updated frequently at a sampling

rate of about 60 hertz, computational efficiency is of
a major concern in the formulation of the dynamical
equations. From the point of view of computer simula-
tion, the dynamics equations derived by classical
dynamic methods are too slow for real-time computa-
tion, Consequently due to the importance of the subject,
the dynamics problem of manipulator arms has attrac-
ted considerable research and several techniques have
evolved,

In recent years, several computational algorithms
for generating the manipulators equations of motion
for the sake of control and simulation have been deve-
loped (Fig. 1). Most of which are based on either
Lagrange’s equation [1-9 ] or the Newton-Euler

Robotic Arms Dynamics Formulation History

Lagrangian Dynamice Newton—EBuler Dynamice Kans Dynamics
Ulcksr /Kahn VWaters Hollerbach Kans/Lavinson
4x4 matrices Backward Forwerd Euler Parameters

Racureion Recureion &
434 matrices Ralative Coord.
4x4 matrices 3x3 matrices

Fig. 1. Robotic arms dynamics formulation history
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REVIEW

Dynamics Simulation Algorithms of Industrial Robots

A. Meghdari, Ph.D.

Mech. Eng. Dept. Sharif Univ. of Tech.

ABSTRACT

Presented are an investigation of mathematical algorithms pertaining to formulation of
the governing dynamical equations of motion for industrial robots. Formulations based
upon Lagrangian Dynamics, Newton - Euler Dynamics, and Kane Dynamics are specifically
discussed in accordance to their computational complexities and the number of arithmetic

A

operations involved.

1. INTRODUCTION

The efficient mathematical formulation of dynamic

equations is of utmost importance in the analysis and
control of robot manipulators. Hence, the first step
one takes in analysing, designing, or identifying a robo-
tic mechanism is to derive the system’s equations of
motion, because robot dynamics are concerned with
the relationship between the motions of the mechanical
kinematic chain of linkages and the forces or torques
applied by its actuators.

In general, there exists two problems related to the

dynamics of a manipulator arm. The first problem can
be stated as evaluating the resulting motion of the
manipulator, g , é, and § (i.e. Position, Velocity, and
Acceleration) under the application of a set of joint
torques 1, which is obviously useful for simulating the
mechanism. Inrobotics, this is refered to as the Forward
Dynamics Problem. The second problem is to compute
the joint torques required to produce given joint posi-
tions, velocities, and accelerations. The latter case
named as Inverse Dynamics Problem is useful for the
purpose of real-time control of the robotic arm which

in turn is a computationally complex task. For mecha-
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