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i can also be proved that the dimension number can

be written as,[8]

B=2ToW=21ymaxW {(41)

in PPM system where TO is the maximum delay and
W is the bandwidth of the filter, and in FPM system,

[al.
g=2 Ts WO =2 Ts famax (42)

inwhich TS is duration of pulse and 2W is the effective
bandwidth.
Therefore Eq. {40) showes the measure of S/N

V. Conclusion

MIT Radar performance has been modeled by
pulse and Frequency Position Modulation. The model
is valid for weak noise detection of range and Doppler
i.e. probability of anomalous condition has been
found to.show the measure of S/N ratio to make sure
that the weak noise model is valid.

The result showes that rms error in estimating
Doppler shift {and range) is inversly proportional to
pulse duration (and bandwidth) and is inversly pro—

portional to square of signal to noise ratio. These
results are valid while anomalous condition does not

which is neccesary to makes P(A) small enough in occur.
order to be sure that range and Doppler performance
resulted as Fg. (29) and Eq.(34) be valid. P(A)
depandace with S/N has been showin in Fig.b. as a
parameter 3.
: N n{t)
\/ 7 cos (27 £yt TS/Z) Doppler amplifier s(t) r{t)
B - L. . .
s Shift > VES b3
mfdmax N
(a)
s(t)
4
2ES/'PS
/\ . N
—Ts/2 +’I’s/2

()
s(f)A \/'I's Es/z
et
l/TS ©)

Fig 1, FPM Model and Signal, (a) Doppler Shift Model, (b)
Domain,

Signal in Time Domain, (C) Signal in Frequency
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6 2=ty —1y%=3Ngy /2 Eg 2TW)7) (33)

By replacing, [8]

f=4W tymax

in PPM, equation 32, & 33 will become as following

p—— N
2 _ 12 0 1
€ = (32)
.m T2 2E, 62
€,d =12Ngt3 ./ W22E ) (33)
hence,
/ NO 1:dmax
=/ 3N0/2E [ (2TW) = (34)

2

i.e. by increasing signal bandwidth, time delay or
range estimate will become more accurate. This
accuracy will increase by increasing signal to noise

ratio, too. This result is in the case of weak noise.

IV, Probability of Anomalous Case

Mean square error of range and Doppler estima—
tion were found in the case of weak noise assumption
which we could generalize the result of linear modu—
lation to nonlinear modulations such as PPM and
FPM. But when noise increase, we say that the rece—
ived signal is anomalous. [n an anomalous situation it
is not possible for any receiver to make a meaningful
estimate of m; this follows from the fact the a post—
eriori density function Pm/r' which contains all data
relevant to any estimate of m, is either fundamentally
ambiguous or is misleading. Therefor we have to cal—
culate the probability of anomalous condition.

Assume 8 corresponding to mg is transmitted.
Also assume s can be shown by f orthogonal signals.
which is given by Eq 41 and Eq. 42. with no loss of
generality 3 dimension is shown in Fig.4. when i) is
transmitted the decision will be correct if Ny and ny
VE*ng

both be smaller than
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I"O'_“\/-.ES+ no

1f we assume that all n; are statistically independent

and identically distributed, we will have;
Prp @ =Ppla —VE (36)

Where @.is a parameter that we want to estimate.
Ph {(¢) has a Gaussian form and independant from
each other.

The probability of correct with the condition

that Mg has been transmitted given o=@ will be[7]

P(C/mgy . rg=a)=Pin, (a,nz(a,....,nﬁ_{(a)

= P, @B (37)

or
4+ co + o0
P(C/mo) = j Pn {a— \/'Es)d al j Pn(’y)
— OO — O
NPT =picim) =pic) (38
probability of anomalous condition is
P(A)=1—qg (C/ mj) (39)

therefore,
_ 1 _ _\[""2
1 VNG~ | &PV E)
_. 00 0

—0 (~ ﬁ—‘l =____@'_:1__._
/NO]}H by VRGN oy Bt

S

exp (—=E;/2Ny)  (40)

where Q () is

+ o0
Qla) & J;‘%J exp (—02/2)d 0
— &




its component on appropriate basic function set.
When m = mg accordingto S = SO , for weak noise if
the receiver r be close 10 sq , i.e. if r be in the region
with at most several times of the standard deviation
of noise we can behave with nonlinear modulation

such as linear modulation. By using

s=s+ (M- mo) {ds/dm} k (24)

- ‘ m= mo

we find the norm of s and using Eq. (23) we can have
the performance of nonlinear modulation as extra—

2

polation of linear modulaton case. s© the square of

norm of is given by [4]

-0

2_ (™
7= [ds(t)/dm] 2 dt (25)

which will be shown for linear approximation is

independent of m,

S VUi R e e T i g

if we apply Eq. {25) with s (t) given by Eg.{7)
which is the signal model of FPM case we will get the

following result:

2 2
s”= kg stfdmax) /3

substituting in Eq.{20)

e 2 =(m-m?{ 3Ny /25 (mT g0 )]
m

{27)
Using Eq. (B} to find mean square error for fywe will

have

-5 — %> 2

3 2 = {1y —F4)7 {3Ng/ 2B (T T?) (28)
d

by replacing, [8]

B=2Tfgmax

in FPM equation 27 & 28 will become

f’—
dimax (28)

or r.m.s. of fd is

Je Z (NG ey T =\12 Ny Tumax

¢ A4 0 _dmax

d 72 2 E §
which says as much as Ts' the signal duration increase
the performance gets better, also by increasing signal
to noise the accuracy become better. This result is
valid while the weak noise assumption be valid as will
be discussed in 1V,

Besides the theoretical minimum signal to noise
ratio required to measure the frequency of a pulse

with accuracy A f can be found from relation where
f=K/ (Ts VSN (30)

TS is the effective pulsewidth and k is a constant
which depends on the pulse shape and ranges from0.5
for rectangular pulse to 0.8 for Guassian shape pulse
(5], [6].

C. Puise Position Modulation Consideration

Applying Eg. (25) with s(t) given by Eq. (13)

2

and using Parseval relationship, s“ will be calculated;

2_ 2
S =B 2Tty W/ (31)

Applying the above equation in Eq. {23) will give the

mean square error for m;

2

e = M2 2
LS m-ME=3Ny /2B 2wty w2 (39

Using Eq. {10) will result mean square error of 't\d, i.e.
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rewriting Eg {8}, Eqg (10) and Eg (12) will give:
S(t) =V 2WEs Sinc [2W (t—mtdmax] (13)

Time and frequency shape of S{t} in the case of PPM
model is given in Fig 2. In a PPM system we have:

S(t) = VE; @ (t-mTy) (8)
Where
@ (t)=J2W Sinc (2Wt) (12)

According to the Egs (12}, (13), (8) and (12} it can
be seen that the envelope of Radar echo for range

estimation is a Pulse Position Modulation, PPM.

1. Weak Noise Consideration

Since target speed and range appears as nonlinear
modulation on the reflected signal, its performance
evaluation is rather complicated; therefore we will
apply the linear modulation approach approximation

for these cases.

A. Linear Modulation Performance and Its Extrapolation.

When parameter m is linear modulated we receive

r(t) = S{t) + n(t) (14)
with
s(t) =mA ¢ (1) (15)

Where ¢ (t) is unit energy waveform, A is the gain and
n{t) is white Gaussian noise with density NO/ 2. Eq

(14) can also be written as s{t) & n(t)'s component on

1), ie.
r=mA-+n {16)
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s=mA (17)

If m has any arbitrary distribution then Maximum

Liklihood reciver will estimate m, as [1];
m=r/A (18)

As shows in Fig.3. in this case mean square error can
easily be calculated by using Egs (16) and {18), [2];

€= (m - M2 =Ny/ (2A2) (19)

If m has limited value such as given in Egs (6) and
(11}, then the maximum likelihood receiver will have
limiter in order that m to stay in the region of m. In
this case mean square error will be smaller than what
is given in Eqg. (19) because some amount of noise will

not appear as error [2], i.e.

e 2= (m -2 {Ng /(2 A?) (20)

in which the equality hold if and only if m is
unbounded. Now we extrapolate the above results for

nonlinear modulations. In linear modulation we have

as Eq. (17);
s=mA

If we define pas basic function representation of ¢ (t)

Then we can write Eq. (17) as.

=MmA g (21)

besides, if we define the norm of ds/dm as, [3]

sA .9:3:,1 (22)
dm

we can write Eqg. {20) as

e 2= (m— M2 {Ny /125 (23)

In nonlinear modulation we may write s in terms of



returned pulse pasition.

A. Doppler Estimation As FPM Model

MT! Radar received signal which is given in Eg.
{1) Contains s{t}) with energy Es the affect of the
target at the receiver in term of (t) with unit energy
such that;
s(t) = \/’FZ: W (t) (2)

&,D(t) ={ I 2/TS Cos [2 T (fO +fd)t] —*TS 2 ('( <TS /2 (3)
lo Otherwise

The above equations describe the echo signal
from target meanwhile these equations represent FPM
signal.

With ordinary FPM the transmitted signal is Ts
second pulse of sine wave, with carrier frequency fO

and Doppler Shift mw as following:

s(t) = E v (1} (2)
p(t) = v 2/T Cos 27+ mwg) 1]

~Tg/2 {t (TS/Z {3)
0 eleswhere

We assume that the random variable m is confined to
[—-1, 1] and 2WO is effective bandwidth. The estima—
tion of Doppler frequency fd is equivalent with target

radial velocity, Vr' estimation. i.e.

fg= 205V /C (4)

Where fO is the carrier frequency and C is speed of
propagation. In Eg. (3} we have neglected the time
delay due to target, because it will be dealt later on.

We may write,

fd = mfdmax (5)

wher fdmax is macimum Doppler frequency and m is

a parameter;

—~1 {m{1 (6)

which must be estimated. Then Eg. (2) and Eg. (3)

will become as

s(ty=4 27TS Cos [2m (fgt mTyay! t]

—Tg/2 (t(TS/Z {7)

0 eleswhere

which can be considered as Frequency position
Modulation FPM. With continous Parameter m which
must be estimated, in order to estimate fd and there—
fore target speed. S(t) of FPM is shown in Fig. 1. in

time and frequency domain.

B. Range Estimation as PPM Model

s{t) of Eg. (1) for range estimation may be written

as;

s(t) = VE p (t-ty) (8)
where ty is related to range, R, by:

tg=2R/C (9)

where C is the speed of propagation. For simplicity

we will write:

9= mtdmax (10)

where tymax is the maximum interest delay & mis a

parameter such that;
0§ my 1
@ (t) is normalized to have unit energy and is

assumed to be the output of the filter with bandwidth

W for narrow impulsive input pulse, i.e

@ () = VW Sinc (2Wt) (12)
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and PPM Modeling of Radar
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ABSTRACT

likelihoad estimation of range and Doppler.

MT! Radar is modeled as Pulse and Frequency Position Modulation to evaluate the performance for maximum

Performance is calculated in the presence of weaK white Gaussian noise. Probability of anomalous condition
is calculated to show the condition that weak noise model is not valid,

l. Introduction

Exact evaluation of MT!{ Radar performance is
rather complicated since target range and speed
information appear as time delay and Doppler frequ—
ency shift respectively in the echo signal. In this paper
we present rather simple method to evaluate the per—
formance of range and Doppler optimum estimation.
Performance is given in presence of additive, weak,
white, Gaussian noise. The condition which makes
this model valid is examined.

It is assumed that the received signal r(t) be:
r(t) =s(t) +n (1) (1

where s(t) is the effect of signal due to the target with

energy ES , n{t) is assumed to be stationary white
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Gaussian process with density height NO/Z.

To evaluate the performance we will model the
target speed or range effect as Freguency Position or
Pulse Position Modulation. Based on this model,
mean square error of range and Doppler are calculated
as a measure of performance in the presence of weak
white Gaussian noise. The probability of anomalous
case is given as a criteria to check the validity of weak

noise model.

11, Modeling of MT1 Radar by FPM and PPM.

The affect of target speed and range on Radar
signal can be modeled by PPM and FPM as shown in
Fig. 1. {(a) and Fig. 2.(a), i.e. speed affect of target
can be modeled as Doppler change in frequency &

range affect of target can be modeled as delay in



