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Therefore, the CGA cannot make one signed fitness function. However the RPLNN solves
this minimization problem (see Fig. 12-b). Remember that the minimum point for this
problem, as stated above, will occur at the lower limit of x;, which is dictated by the desired
precision (i.e. individual size). This value in the simulation becomes x,=-31.75 & x,=-0,
because we used individual size of 8 bits, a bit for sign and 5 bits for integer part and 2 bits for
decimal part, for each parameter x; and x,. Therefore the minimum point will be (-31.75, 0) as
shown in Figure 12-b. To show how fast the RPLNN reaches the minimum point, we
performed 40 different runs and the average time of convergent becomes 242 seconds.

o - Start Poézto . ”u.y_\%v& —’
D1 Endpomt e ™
x ?\ RFLNN™._
20 > > e P . -
/,/ T \SD
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-15+F ]
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.Xl

Figure (12) The RPLNN Performance and the SD performance for example 2-iii.

4-Conclusion

In this paper, a new technique, Ring Probabilistic Logic Neural Networks, was proposed
for optimization. Its performances have been fully discussed and compared with those of
gradient-based and conventional genetic algorithms through several illustrative examples. In
all cases the RPLNN converged to the global point with less amount of storage memory and
computations time. In contrast, the gradient-based techniques and the CGA fail to reach the
optimum point. We should further note that the CGA in some cases (i.e., example 2-iii) could
not be applied and for the other cases it might converge to the global point with some
modifications, but it needs high amount of computational times and storage memory.
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Figure 12 plots this function. It can be easily shown that fis continuously differentiable for
x,>0, and in addition, the set of possible discontinuities of the gradient satisfies the condition

x,=0 and x,<0. To be sure about it, let us determine the gradient:

of, | 4-13-x 9413 - x

D , 16-a
Ox 1&4—x{7‘+9-x22 \/Z-x12+9~x§ ( )
% = [4 9. Sign(x2 )], (16-b)
ox

_8_/;1 =[4 9 Signlx, N for x =%l (17)

ox
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Figure (12) Function of example 2-iii

As easily observed, no discontinuity of the gradient on the line x,= \ X, | exists, therefore, f
is continuously differentiable on the half-plane x,>0. In contrast, the gradient is discontinuous
on the ray x,=0, x;<0. To show this, let us compute the gradient on this ray:

% _h. % _
-5}_[2\/1—5 0] = [4 o]

X

So, we faced witha non-differentiable convex function. We may further see that the limit
of fon this ray becomes -0 as x; goes t0 -<. But, if we choose a starting point (x;, x,) =(8 , -6)
then, as depicted in Figure 12-a, the method of SD converges to the point (x;, x;) =(0 , 0).
Note that the origin is a non-stationary point for this example; this contradicts the fact that for
continuously differentiable functions the set of accumulation points of a segment generated by
the method of SD is not well suited for minimizing non-differentiable convex functions. The
contrast of this example is that the CGA cannot be applied for minimizing this sort of
functions, because f is defined in the above and below of horizontal coordinate surface.
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¢) CGA Performance

ili- A Function with Discontinuity in its Gradient
Consider the third example that is a function of two variables

f<x,,xz):{f;(xl,x2>=ﬁz‘-\/@-xlf+(3-x2>2

fZ(x},x2)=4'x, +9-fx2f

X > ’le

X S[le

(15)
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Figure (9) Conventional Genetic Algorithms Performance (Function Values at each k).

ii- A non-smooth function
The second function optimization problem is the maximization of the following function,
which is non-smooth along the coordinate axis.

73,%,) = (0,02 - 17 +(0.02},| -1 (14)

Figure 10 shows this function. As seen this function is not differentiable at origin, because
its directional derivative is different in each direction. The SD, CGA and RPLNN are applied
to find the values of x; and x, that maximize the function given in Eq. (14). Again to compare
the performance of these methods, we used the initial condition (15.94,15.44). Figure 11
summarizes the results. SD reaches the point (.001,.001) which is very close to the optimum
point, the origin with total number of flops 249590 and the RPLNN reaches the optimum
point (0,0) with number of flops 2 89750. We have also implemented the CGA on this
problem. The result is shown in Fig. 1lc. After 1000 iterations with population size 60,
Pc=.97 and Pm=.01, the final point (0,.01), which is very close to the optimum point, has been
reached with the total number of flops 15097968.

f(x1,%2)

Figr ¢ (10) Function of example 2-ii.
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Table (4) Simulation Results for example 2-7
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Figure (8) Function of example 2-1

SD CG RPLNN
Initial Point A:(X,, X, } (31.9844,31.9844) | (31.9844 , 31.9844) (31.9844 , 31.9844)
Final Point B:(x,, X, ) (31.0896,31.0896) | (31.0976 , 31.0976) 0,0
Mean Time (Sec.) Not Converged Not Converged 10.6340
Initial Point A:(X},X,) (106562 , 106562) (106562, 10.6562) (106562 , 106562)
Final Point B;(xl ,xz) (11.0983, 11.0983) (11.1060 , 11.1060) 0,0)
Mean Time (Sec.) Not Converged Not Convgggd 12.5755
Initial Point A3(xl X5 ) (31,9844, 10.6562) (31.9844 ,10.6562) (31.9844 , 10.6562)
Final Point B;(xl s xz) (32.7708 , 10.9182) (32,7828, 10.9222) 0,0
Mean Time (Sec.) Not Converged Not Converged 8.3407
Initial Point A:(X;, X, ) | (-3.5312, -3.5312) (-3.5312, -3.5312) (-3.5312, -3.5312)
Final Point B;(\x1 R xz) (-4.4386 , -4.4386) (-4.4424 , -4.4424) (0,0)
Mean Time (Sec.) Not Converged Not Converged 9.7083

As we could expect the hill climbing methods starting from an initially point in the two
dimensional parameter space, and following the steepest descent gradient directions, get
trapped in one of the local optima. In contrast, the CGA and the RPLNN show robust
performance. Figure 9 illustrates the performance of the CGA for the function given in
Eq.(13). The population size of the CGA is chosen 100 and new population is generated in
10000 epochs with run time of 51754 seconds (about 14 hours). The CGA could reach to
point (1.57,2.71) with the maximum value of 0.9902 instead of 1 that is the global maximum.
In contrast, the RPLNN reached to the global response and the other methods were trapped in
one of the local solutions.
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The proposed modified CGA is accomplished in such a way that at first all individuals of
the initial population are randomly selected from the allowable solution space. Then, like the
CGA discussed in section II, all permissible individuals are evaluated and the process
continues until crossover operator is done. When the crossover operator combines two
permissible individuals, they may produce an offspring outside the allowable space. In this
case, the offspring is omitted and substituted by a random permissible individual from the
allowable space. Then, by this injection of random individuals in new population, it is not
necessary to use the mutation operator. If all produced offspring by crossover recombination 1s
valid, the mutation operator executes on population as explained in section II.

By this procedure we solved the cantilevered beam problem. The results are listed in
Table3. The sub-optimum performance of V*=47811 has been obtained after 3000 revisions
on population (3000 epochs) for the optimum design variables as shown in Table 3.

Table 3 also lists the results of the cantilevered beam problem, obtained from the RPLNN.
After 3000 iterations, the sub-optimum performance became y*=29745. By comparing these
two methods, we can obviously see that the RPLNN converges to a better solution with fewer
amounts of computation time and memory locations.

Table (3) Design variable values.

by ¥ by b3 by bg hy ks hy hy hsg
Variables
1.125 3.000 1.125 2.250 5.125 59.000 | 53.500 | 37.125 44125 21.500
CGA
1.375 8.500 2.250 1.250 2250 | 30.875 | 20.875 | 10.625 13.000 16.625
RPLNN

Example 2: Some Function Optimization

This section considers the problem of finding the optimum values of three different
functions used as benchmark in order to test the performance of the proposed RPLNN and
compare it with CGA, and two gradient-based optimization methods: steepest descent (SD)
and conjugate-gradient techniques (CG) [7-8].

i- A function with a unique global maximum surrounded by local maximum

The first function is defined as

2 [ 2. 2
f(xhxz): Cosyxi +% (13)

140001 {x? +x2)

As one observes from Figure 8, this function possesses a unique global maximum of 1 at
the origin surrounded by an army of local optima. Because of these oscillations many different
optimization techniques had hard time to find the maximum of this function.

To show this, we apply two conventional hill-climbing methods (S.D. & CG), the CGA
and RPLNN to find the optimum of this function. The results and run time of them are
summarized in Table 4.

Because all the three methods, steepest descent, conjugate gradient and RPLNN act on
individuals, for the purpose of comparison, we set the initial conditions to four different value
as,

(X, Xon) = (31.9844,31.9844), (XX = (10.6562,10.6562), (X,1-%02) = (31.9844,10.6562)
and  (x,,X,) = (-3.5312,-3.53 12). For each initial condition, we performed the RPLNN

method 40 runs (times) and the average value of running times is listed in Table 4.
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moment of inertia for segment i, 7, bending moment at the left end of segment 7, and M, are
defined by:

b -k
li==5 4)
M, = p(uz, - iz,} (5)
J=1"

And finally the corresponding maximum bending stress becomes:

Now, we may state the design problem as:

N
Minimize: V =3Yb-h I, N
i=1
Subject to:
Zi_1<0 i=1,N, (8)
o
IV 1>, ©)
y
h —20-b, <0 i=1 N, (10)
b > 0.1 i=1--,N, (11)
h 205 i=1--,N, (12)

In the above,C and ¥ are the allowable bending stress and displacement, respectively. This
Is an optimization, indeed a constraint, problem in n=2N parameters with N + 1 nonlinear
constraints defined by Egs. (8) and (9), N linear constraints defined by Eq. (10), and 2N side
constraints, which are treated here as general inequality constraints, on the design variables
defined by Eqs. (11) and (12). It is further assumed that lower bounds of 0.1 are imposed
explicitly on b, and A, i = 1, ..., N within the optimization procedure to guarantee that the
design remains physically meaningful.

The CGA and the RPLNN have been applied to this problem with five segments (10 design
variables). Because of the above several constraints, the ordinary CGA could poorly solve the
problem, we propose a modified CGA in which any individual is not acceptable, and only
those that rest in the constraints (8)-(12) are valid in order to show the high performance of
the proposed network.
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3-Illustrative Examples ,

In this section the performance of RPLNN is investigated and compared with that of the
CGA. Two different examples are considered as case studies. In the first example, a problem
of minimization is proposed, and in the second example, some function optimization
problems are performed.

Example 1: Design of a Cantilevered Beam

Consider the cantilevered beam shown in Figure 7 [15] This beam is to be designed for
minimum material volume. The set of adjustable design variables includes the width b and the
height 4 at each of N segments, with N=5. The objective is to design the beam subject to limits
on stress, which are calculated at the left end of each segment, deflection under the load, and
the geometric requirement that the height of any segment does not exceed twenty times the
width.

w———f1 :i‘ Zz :I‘: jg——-ﬂ—-——&r.i-——ﬂ———-fs————*

£=50,000 N

T z=200 cPa

;zz' L =500 cm

1 F=14000 Nicm?

—| & f— V=05 cm

Figure (7) Cantilevered beam

The following recursion formula calculate the deflection y; at the right end of segment i

¥y =Y, =0, (1)
Pt (L

VLIS B [y g S o B P A 2

i E-I,( 2 /le) Yt @
P-I} 20, i) 2

= AL+ LS+ v L+ Y. J

Vi 2.E./,[ 3 _E}'/J it i )

Where [, is the length of segment i, the deflection y is defined as positive downward, y’
represents the slope, £ denotes Young's module which is the same for all segments, the
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Now by changing truth-values of the RPLNN, we may obtain some other state classes as
given in Figure 5-b. For example, if the RPLNN reaches class {5}, it may remain in this class
or it can move to another class state if the inputs change. Therefore, by changing the inputs or
the truth table, the RPLNN can move to all classes of the state space and reach all states of the
space including the global state. On the other hand, the RPLNN has the potential ability to
reach the global point in the state space.

In short, noting that 1-the RPLNN has the ablility to divide the search space into a set of
class-states, 2- by imposing the RPLNN external inputs or changing truth values of its
neurons, one can either change the state communicating class or make the network experience
some other states in the current class, this network will get the opportunity to reach any point
in the search space including the global point.

Now the question is how to do the search in the state space. This is summarized below.

A-Search Algorithm:

1- Select the length of the RPLNN (i.e., number of neurons) for a given state space resolution,

2- Set the outputs of the RPLNN to some numbers selected at random in the state space,

3- Set all truth values of neurons to ‘i,

4- Perform the RPLNN,

5- If the next state leads to a better performance depending on the objective function, update
the truth table; set the corresponding truth-values to this state.

6- If the next state does not lead to a satisfactory result, let the network move to another state.

7- Do steps 5 and 6 for P times, (P is chosen by users), and then go to step 3.

8- Do the above steps Q times, (Q is set by user); note that O>>P.

B-Convergence Analysis:

Although the convergence proof of the RPLNN is independently under investigation by the
authors using the theory of statistical convergence and analysis (i.e., probability in the limit),
the RPLNN convergence analysis can be easily done by adopting the procedure established by
Zhang et al. [4-5] for convergence analysis of a multi-layer PLN network whose general
structure is shown in Figure 6. By a deep look at the RPLNN shown in Figure 3 and
comparing it with the structure given in Figure 6, one may observe that the RPLNN is indeed
a one layer PLN network with a special feed-back/feed-forward ordering.

b *u
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Figure (6) Multi-Layer PLN Network.
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Table (2) Truth table of neurons of the RPLNN, steady state case.

I 1|0 o0* o o 0O 0% 0
0 u 0 1 u 0 u

— e O

0
0 1 u u 1 0 u 1
1 0 0 0 u 0 u 1
1 1 0 u u u 0 u

It is evident that the outputs of the RPLNN are obtained by looking at its truth table. For
example, assume that the output of each PLN is v, i.e. if the inputs of unit 5 are K=1 13=1,
the output of this unit becomes 0 or 1 with equal probability.

Now assume that the RPLNN has 9 states and its truth table has been partitioned in the
state space communicating classes: {1,2,3}, {4}, {5}, {6,7,8} or {9} as shown in Fig. 5. If the
RPLNN is in state 2, see Figure 5-a, then it can jump to the state class {1,2,3}; consequently
the RPLNN can see all states in this class. We should note that by varying the values of the
inputs, the network may go to the other state classes, i.e. state class {4},{5},{6,7,8}or {9}, or

remains in
the present state class{l,2,3}.
State communication classes the RPLNN

(b) Moving around State Communicating Classes
Figure (5) State Communicating Classes of the RPLNN based on its current truth table.
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Now we propose the structure given in Figure 3. It obviously has a ring structured format.
This is the reason why the acronym of Ring Probabilistic Logic Neural Networks
(RPLNN),.has been taken.

2-2- The Optimization Property
Our objective in this paper is to use the RPLNN structure to optimize an object function.

0 1 ON 4 O M

I!’( | IH

Figure (3) The Ring Probabilistic Logic Neuron Networks, RPLNN.

For this reason, this subsection is devoted to expose this property of the proposed network.
Assume that the current inputs of the RPLNN are I;=1100110 and 1,=1001101 and the output

of the net is desired to be O=0010011 as illustrated in Fig. 4..

Present State; 1001101
Next Desired State: 0010011

1 0 0 1 1 0 1

TETETTETET:

Fig (4) Transient of the RPLNN from the present State to the next desired State.

If we further assume that Table 1 represents the truth table of neurons of the RPLNN given
in Fig. 4, then the next state of the RPLNN will be 0010011 and if we also wish to keep the
RPLNN in this state, the truth values of neurons of the RPLNN must be as those given in
Table 2.

Table (1) Truth table of neurons of the RPLNN, rransition case.

I Ljo 0o* 0 o o 0 0o
0 0 u " u 1 u u u u
0 1 u u u 0 u u 1
1 0 u 0 u u u I u
1 1 0 u u u 0 u u

46 Amirkabir/ Vol. 14/ No. 53/ Winter 2003



neurons, we can employ the network to recall the prototype patterns and to recognize the
patterns from noisy environment as well.

QOutput Pattern o'
Output Buffer

PLH

Input Buffer

Input Pattern 1, 1,

Figure (1) Probabilistic Logic Neuron (PLN).
(a) Non-Overlapped Trees of PLN Networks (taken from [3])
(b) The Structure of PLN Networks (taken from [4])

nn I Ln I 1§ I I

Figure (2) Two Structures of PLN Networks.

To fill out the truth table associated with each PLN, we have to use the input/output pairs
of experimental data. The pure random search-learning algorithm for PLN networks called
"A-Learning Rule" is given below.

1- Initially, u is assigned to each PLN element as its output value, where u denotes that the

“don’t care” state whose value is 0 or 1 with equa] probability.

2- A pair of data 7' = (xi .y ) is taken from a sequence of m training samples, where x' and y'
respectively represent the input and output vectors.
3- Input x'. Ifthe output vector of the network is equal to y', go to step 4-1, otherwise train

the network for p times, (p is a positive integer). If the output is still not equal to y', go to
step 4.1. '

4-1- Record the values in the truth table which shows partially the relationship between output
and input of each element and then go to step 2.

4-2- After assigning the value "u" to the outputs of all neurons, go to step 2.

5- Repeat steps 1 to 4, until the entries of truth table do not vary with time for all training data.
Here, the don't-care entries of the truth table (the entries with "u" values) are considered as
float values.

Easily can be seen that with this learning algoriithm, the PLN can be used as a pattern
recognizer.
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second category require gradient information either exactly or numerically. The common
characteristic of these methods is that they all work on a point-by-point basis, i.e. they begin
with an initial solution (usually supplied by the user) and a new solution is calculated
according to the steps of the algorithm.

In 1957, Box introduced anew direct search technique known as "evolutionary operation
(optimization)" method, [9]. Box's direct search method is different from the aforementioned
methods. Box's algorithm operates with a number of solutions instead of a single one. Around
the best solution of the current iteration, a new set of solutions is created for the next iteration.
Because the algorithm requires no information about the non-accepted solutions in choosing
new solutions in subsequent iterations, it represents a slow and not good enough efficient
method. But, it is worth mentioning that, however this algorithm in general resumes with an
evenly distributed set of solutions, in the case of wide spread solutions; it may find at some
point the global solution.

Another important method for optimization problem is Simulated Annealing. The SA is
inspired from annealing of solids and is leaned to atomic array of material depending on the
material's level of energy, which becomes less for solid materials. In SA there exists a unique
relation between the parameters and the objective function of the optimization problem with
the atomic array and the energy level of the material, respectively. The SA is very slow
because of its temperature effects and individual based property [10]. The slowness of the SA
as well as its fast heating and gradually cooling process prevent SA to be used in real-time
control process.

The next important alternative to solve optimization problems  is Evolutionary
Programming (EP). The process stages of EP and GA are almost the same and both are belong
to Evolutionary Strategy (ES), but their difference is that the conventional GA represents a
binary coded process whereas the EP is indeed a real coded process. In the EP, to produce new
population from the present population, the strategies (1, 1) and (1 + A) have been introduced
[11].

Mimicking the process of biological evolution, GA represents a type of structured random
search [12-13]. In solving a given optimization task, the GA starts with a collection of
solutions (i.e. parameter estimates) called by chromosomes. Each individual (chromosome) is
evaluated by a fitness function. In each iteration, more fit chromosomes (parents) have higher
chance to mate and bear offspring (produce new individuals). These individuals (children) or
new parameters provide the basis for the next generation. The conventional GA may be
completely described by the following step [14]: ‘

1- Select a coding scheme to represent adjustable parameters.

2- Initialize and evaluate a population of chromosomes.

3- Repeat the following steps till stopping criteria are met.

3-1- Reproduction
3-2- Crossover
3-3- Mutation
3-4- Population evaluation
Below the structure of Ring Probabilistic Logic Neural Networks (RPLNN) is described.

2-Optimization by Ring Probabilistic Logic Neural Networks
1-2-The Structure

In this section we introduce the RPLNN by employing the concept of Probabilistic Logic
Neuron (PLN) [1-3] that has been frequently used in pattern recognition problems. Figures 1
and 2 represent the PLN and the most two common kinds of the PLN networks, respectively.
Using the structures given in Figure 2 and the truth table showing the inter-relation among the
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Abstract

By adopting the concept of the probabilistic logic neuron which represents a class of RAM-
! based neural networks, this paper introduces a model-free optimization method called Ring '
Probabilistic Logic Neural Networks (RPLNN) that are more suitable for optimization problems.
! To highlight performance of the RPLNN, some different optimization problems are considered.
| The simulation results show that the Ring Probabilistic Logic Neural Networks remarkably
outperform the conventional genetic algorithms and some gradient based methods as well. '

Introduction

As an alternative to the traditional weighting-sum-threshold model of neural networks, Kan
et al [1-2] originally introduced the Probabilistic Logic Neuron (PLN) model of neural
networks. With the general goal of overcoming some deficiencies of traditional neural
networks, the PLN is a very simple model and represents a class of RAM-based neural
networks. The PLN has been used frequently in pattern recognition [3-5]. In this paper by
employing the concept of probabilistic logic neuron, we introduce Ring Probabilistic Neural
Networks (RPLNN) which is more suitable for optimization problems. The RPLNN
represents a model free-based optimization method adopted from the PLN. The PLN
categorizes the space response while the RPLNN has the extra ability to move on in each
category.

The paper is organized as follows. Section II presents a brief review of optimization
techniques and procedure of conventional genetic algorithms (CGA). Section III introduces
the RPLNN. To show the effectiveness of the proposed genetic algorithm, in section IV,
through two illustrative examples the performance RPLNN are investigated and their
capabilities are listed. Finally, section V concludes the paper.

1-A brief review on optimization technique

Most traditional optimization methods employed in science and engineering can be divided
into two broad categories: direct search techniques [6] and gradient search methods [7-8]. The
methods in the first category need the objective function values while the techniques in the
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