where v and ye are the specific weights of liquid
and vapor respectively. Substitution of equations
(5) and (6) into equation (4) gives

z c d |
Ps(0)}—Pa(0) H{yl—ya) f(r)= - 'a';_—(fl’smﬁ) 7

where

. f '
$iNg = =, |
VIH®)]
Introducing the dimensionless variables
r r
s=L , Fo=L12
a o

equation (7) is converted to
differential equation

the following

1 d ‘
ot+pF=————o{(s sing) L
s ds

where
a=[Pa0)—Pr(0) Jors 10
B=tp— wd /o 1

Equation (9) is a nonlinear equation which can

be solved numerically. However , for most
purposes, the approximate solution to be obtained
is sufficient.
In most instances, the capillary rise H, will
greatly exceed the radius of curvature of the
meniscus surface, a first approximation to the
solution of equation (9) can be obtained by
neglecting F on the left-hand side of equation (9).
'Subject to the boundary conditions,

F(o) =0 12

Flo)y=o0 13

F(1)=cote 14
.we obtain

F,(s)r-seca.[l— \/l—-—szcosze] 15
An improved solution Fas), is obtained by
using Fi(s)for F in the left-hand side of equation (9).
This substitution together with integration of the
resulting equation from $= 0 to s= I, gives

e B -

'where

.contact angle:e

- component of the surface tension force 2nuo Cose,

- . 2 24
Q@):sec’ ef_ cos'e -{-—-3-- sin’e -3—} 17 |

If the variation in the densities of the liquid and
vapor over the capillary rise H, are negligible, then

a H 18

s

B o

and the following relation is obtained between the
surface tension -.¢ the capillary rise H, and the

2ocose

F————-oq(e) 19
(y—ya)a »
If q(e) is neglected in this last equation, the |
remaining terms -simply balance’ the vertical}

against:the effective weight of the liquid column:
o’ H¢yi< ye). Indeed, the term g(@) accounts for the
small hydrostatic pressure gene rated by the liquid
above H between the meniscus and the tube wall. In
most applications the contact angle e, is small
enough so that cos 8= | and q(e) =~

From equation (19) it can be observed that if y1
2 ye and if the second term of the righi—hand side is
neglected, Batchelofs condition for equilibrium of
the column is obtained.
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On the Theory of Capillary Rise

- F. Shokoohi, Ph.D.

Tech. &Eng. Univ, TEHERAN

 ABSTRACT

A Theory has been developed to predict the rise of

aliquid within a capillary. This rise can be used for the
experimental determination of surface tensions:

| capillary rise is presented by Batchelor'. According
to ‘this “theory the capillary rise is given by

={2ocose) . This rise can be used for

experimental determination.of surface tensions. In
this paper an improved. theory. developed’ which
gives a better approximation of H,

Fig. 1 shows a column of liquid in
"thérmodynamic equilibriunt with its own: vapor.

: panatl Saturated vapor

i P
—M—-—J\.—.‘.’—.’,

Saturated liquid

A simplified theory for the prediction of the’

A necessary thermodynamic condition for such
equilibrium to exist is that the. temperature be
uniform throughout the liquid and vapor phases. |

Let the curved interfacial surface at the top.of
the capillary column be described by x3 =f(r) 1

If PAis the local fluid pressure in-the liquid just |
beneath: the interface, and Ps:is the local fluid |
pressiire in-the- vapor just above, the:condition for|
equilibrium  is Where Ry and Ry are the principal }
radii-of ‘ "

Pa—Ps=g( ——+-——~ ) v(

R3) | VF| )

curvature, - is the surface tension between the two
fluids, and F=x,-f(1) 3

Combination of equations (2)'and (3) gives

. S 4 ¢ YW 4
Pa—Po=-— 4 {71+‘[f’(r)]’}

With the origin of the coordinates taken at the:

low point. on the interface, the statical pressure

distributions within the vapor and liquid in the
vicinity of the origin are given by.

A=Pa(0)—mnX;- 5

Ps=Pr(0)—vsX; = 6
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