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ABSTRACT

The Pressure-Poisson Equation (PPE) is a classical elliptic partial differential equation which provides a
relationship to extract the so-called pressure parameter from a distributed parameter on an enclosed domain.
The proper formulation for the PPE together with the boundary conditions must satisfy the compatibility and
incompressibility conditions and minimize the resulting errors of approximations and discretization.
Especially, when a non-staggered arrangement of parameters in an irregular domain is considered, satisfying
these constraints needs more considerations. In this paper, solution of the PPE with the Neumann boundary
condition on an irregular domain using this type of grid arrangement is considered. In this regard, the proper
discretization of the PPE for this solution is presented. Also, a method of boundary and domain coding is
suggested to facilitate applying boundary conditions at irregular domains. The convergency of this solution
method is evaluated using a test problem. The results show the applicability and correct discretization

approach provided in this study.
KEYWORDS

Numerical Solution, Pressure Poisson Equation, Irregular Domain, non-Staggered Grid.

1. INTRODUCTION

The Pressure Poisson Equation (PPE) is a standard
elliptic partial differential equation which widely appears
in the numerical formulation and solution of the
incompressible Navier-Stokes equations using projection
methods [1], [2]. It uses distributed velocity vector data to
obtain the unknown potential parameter pressure. It is
shown that the arrangement of these parameters in the
computational domain plays an important role in
discretization and solution of this equation [3].
Conventional methods apply the staggered arrangement of
the contributing parameters in the solution of this equation
[4]. But there is some applications in which the data is
collocated in a single grid point and/or the unknown
parameters are necessary to be calculated at the same data
points. They show the necessity of solving the PPE using
non-staggered grids. Implementation of this type of
computational mesh provides several advantages [3], [5],
but it suffers from oscillation in the calculated pressure
distribution and the difficulties posed by the integral
compatibility constraint to obtain a unique solution for the
pressure [3]. Some publications have proposed corrections

required for the numerical solution of the PPE at regular
domains to satisfy the compatibility condition [6], [7]. But
the formulation for irregular domains has not been
developed yet. This paper suggests some strategies in the
numerical solution of the PPE over irregular domains. The
collocated grid arrangement is considered in this regard.
The type of boundary condition, the form of governing
equation, the method of domain and boundary
discretization and organization of irregular domain grids
for applying these conditions must be considered in these
calculations.

Gresho and Sani (1987) investigated the problem of the
pressure boundary conditions and found the Neumann
boundary condition (normal momentum equation on the
boundary) to be the appropriate one for the PPE. Both
Neumann and Dirichlet boundary conditions provide a
unique numerical solution for the PPE [8]. Numerical
studies show the same result when these boundary
conditions are used on the primitive and non-primitive
formulation of the PPE [9].

The solution for the PPE with the Neumann boundary
conditions is obtained only if a compatibility condition is
satisfied. This condition relates the source of the PPE and
the Neumann boundary conditions (Green’s theorem).
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Failure to satisfy the compatibility condition leads to non-
convergent iterative solutions [10]. This condition will be
satisfied by selecting an appropriate technique for
boundary and domain discretization. Finding the proper
boundary condition for all types of boundary nodes is
important particularly at irregular domains, since in
combination with the domain equations it provides the
compatibility conditions. An organization of domain
nodes is necessary to prevent the complexity and the
misalliance resulting from applying the governing
equations to the obtained nodes of the region.

In this study, the solution of the PPE at irregular
domains with a finite difference discretization scheme is
considered. This study extends the previous studies for
providing consistency in conditions for the numerical
solution of the PPE on irregular domains. The required
formulation and the necessary boundary conditions for this
equation are presented. Also, to facilitate the numerical
implementation of these techniques on irregular domains,
an effective masking matrix is suggested. Using this
masking tool, a boundary coding scheme is developed
which improves the numerical solution of the resulting
equations at irregular domains. This paper is organized as
follows; first, the PPE is introduced and its proper
discretization on irregular domains is presented. A method
for effective organization of boundary and domain
equations is provided in the next step. Finally, the
applicability of these strategies is evaluated using a test
problem and a discussion on the results is provided.

2. MATERIALS AND METHODS

A. Governing Equations

The conventional Pressure Poisson equation is obtained
from the primitive form of the Navier-Stokes equations.
For the better understanding of the contributing
parameters and their applications, we extract the PPE from
the governing equations of an incompressible Newtonian
fluid domain. In an incompressible inviscid flow domain,
the continuity equation is as follows:

V=0 M
where v is the velocity vector and V., is the divergence
operator. The momentum equation is also as:

v, +(v.V)v =-}~Vp+vAv )
Jol

where p is the static pressure, p the density, and v is the
kinematic viscosity, and A is the laplacian operator.
Conventionally, in the solution of these equations, the
momentum equation (2) clearly determines the respective
velocity components. This leaves the continuity equation
(1) to determine the pressure. When the velocity data in a
domain is known, finding the related pressure distribution
is performed by a special operation on this equation. The
form of continuity equation suggests that we take the

divergence of the momentum equation (2). The continuity
equation (1) can then be used to simplify the resulting
equation, leaving a Pressure-Poisson equation for the
static pressure. The viscous and unsteady terms disappear
by virtue of the continuity equation to obtain:

Ap=—pV.(v.V)V 3)

The pressure equation (3) can be solved by one of the
numerical methods for elliptic equations. In two-
dimensional problems, the pressure equation (3) can be
summarized as below:

Dot D, =—PldE+ve), +@ZE+vE),] @

where u and v are the velocity components and the
subscripts x and y in all the governing equations refer to
partial derivatives with respect to x and y.

B. Numerical Solution Procedures

In this section, a method is described to integrate
numerically the two dimensional equations of the
primitive PPE. The governing equation (3) must be
discretized on a collocated grid. A well-posed boundary
value problem, for the elliptic pressure equation requires
the conditions on all the boundaries of the computational
domain to be specified. In addition to the governing
equation, the boundary conditions should also be derived.
One approach is to set the momentum equation valid as
well as on the boundary itself. However, this is a vector
equation and only one scalar boundary condition is
required. With the normal projection of the momentum
equation (2) upon the boundary, the Neumann boundary
condition for the static PPE is obtained as below:

Py =0.Vp (5)

Here, n is the outward normal to the boundary and
subscript n is referring to partial derivatives with respect
to this normal vector. Existence of a solution for the PPE
with this Neumann boundary condition in both
formulations requires the satisfaction of the compatibility
constraint,

J;J‘Apd/f = ;{pnds (6)

The area of the solution domain, 4, is enclosed by the
boundary contour S. Equation (6) is a consequence of
Green’s theorem. Failure to satisfy this condition causes
the iterative solution to drift slowly and endlessly [10]. It
is shown that the compatibility condition (6) is not
automatically satisfied on a non-staggered grid [6]. With
reference to Figure 1 the two dimensional PPE (4) will be
discretized for inner nodes such that to prevent the
pressure oscillation on the domain and to use the
collocated node data. The satisfaction of the compatibility
condition is associated with proper discretization of the
boundary equations. As stated before, the discretization
will proceed first by discretization of the momentum
equation and then the divergence operator will be applied.
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For an irregular domain similar to Figure 1, the
boundary nodes are classified at 8 kinds of boundary
conditions. In the following, the appropriate Neumann
boundary condition for each of these boundary types is
developed to satisfy the compatibility condition (6). The
discretization is performed by considering a unique grid
size & in both x and y directions.

Figure 1: A schematic of a two dimensional arbitrary irregular
flow domain, grid specifications and the classification of
boundary nodes. The boundary nodes are gray and the domain
nodes are indicated with white circles.

Equation (4) can be discretized as given below:
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Boundary condition (5) can also discretized as follows,
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Here, the negative sign of the boundary conditions is
considered. In this case, for the evaluation of the
compatibility equation (6), both sides of equation (7) on
all nodes of the whole domain will be summed with that of
equation (9) on all boundary nodes. For discretization of
the viscous term, as presented in the right hand side of (9),
it is assumed that the second derivative of velocity
components on the boundary nodes and its adjacent nodes
are equal.

For providing the appropriate Neumann boundary
condition at the edge nodes (presented with NE, SE, NW
and SW), it is assumed that the domain nodes in both sides
of these edge nodes provide equal contribution on its
pressure value. Using this type of boundary condition, the
consistency of pressure members on the left hand side, and
the convective terms on the right hand side of equations
(7) and (9) will vanish, and only the viscous terms from
the boundary conditions remain on the right hand side. To
check the dissipation of this term, from the Green’s
theorem for a given vector function Av we have:

iAv.nds = jAj V.AvdA (10)

From the continuity equation, the term on the right
hand side of this integral equation will vanish; hence we
see that for equal size boundary elements ds, the
summation of Av projection along the normal over the
whole boundary will vanish. This states that the
summation of the viscous terms on the right hand side of
the consistency equation over the boundary is equal to
zero; therefore, with this type of discretization and
boundary conditions the compatibility constraint will be
satisfied.

C. Construction of Mask Matrix

Mask matrix is a tool for providing ease in numerical
implementation of such a system of equations on an
irregular domain. Utilizing this matrix, a method arises for
arrangement and coding of the grids in the domain. The
index which specifies the computational node data is the
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same as the index implemented for specifying the code of
the nodes in the mask matrix. Figure 2 provides an
illustration of the mask matrix components for a sample
irregular domain. All nodes inside the domain take a
similar value at the mask matrix. A different value is
considered for all outside nodes. Through this, it is
possible to find out immediately, while programming,
whether a node is inside, outside, or on the boundary. For
example in Figure 2 these values are set to / and 0 for
inside and outside nodes respectively. Also, using this
mask matrix, a boundary coding approach was adopted for
specifying each kind of boundary node. Each boundary
node, which according to its role in the boundary are
presented with E, W, N, S, NE, NW, SE, and SW, adopts a
value for example between /0 to 80, respectively. As a
result, during the iterative solution, all nodes in the
numerical domain can be scanned and according to their
code at the mask matrix, the related appropriate equation
is considered.

3. RESULTS AND DISCUSSION

Numerical evaluation of the primitive form of the PPE
is provided with a test problem in which the real velocity
domain and the related pressure distribution are available.
Here, a standard Couette flow domain is considered for
this evaluation. The Couette flow system consists of two
co-centric cylinders with fluid filled in the annular region,
The relative rotation of these two cylinders around their
axes of symmetry provides a rotational flow domain. The
Navier-Stokes equation for this particular geometry can be
solved in cylindrical coordinates [11]. It can be shown that
the velocity field of fluid is as below,

v=gr+o/r an
and the pressure is as;
p=p(c12r2 —c%/r2 +dcie,Inr)+ey (12)

where ¢; and ¢, are constants which are found from the
boundary conditions and ¢; is the integration constant.
Now, we are equipped with a nontrivial divergence-free
velocity field with a known pressure distribution. Figure 3
shows the velocity domain provided from (11).

The successive over-relaxation (SOR) iterative method
is employed in the numerical estimation of the pressure
domain. For the primitive form of the PPE, equation (7)
with boundary condition (9) is solved. A schematic of the
components of mask matrix constructed for this Couette
flow system is presented in Figure 4. Since the domain
nodes accept a similar discretized equation, they are
presented with a unique coding value. The outside nodes
have zero impact on the calculations and those which have
coded similarly will be rejected during the run. Other
values in this figure are distinctive of the kinds of
boundary nodes. '
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Figure 2: A schematic of mask matrix components according to
their position in the domain. Here, inside of the domain is coded
with 1, outside with zero and boundary nodes are coded from /0
to 80 according to their types.
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Figure 3: The Couette flow velocity vector field.

Numerical solution for the Couette flow domain is
obtained using an equal grid size 4 in both x and y
directions. The calculated pressure contours from this
primitive formulation of PPE are compared with the
standard distribution according to Figure 5. It is clear that
the result presented from the standard pressure distribution
is repeated with this method. These results are obtained
after 100 iterations. Smoothness and similarity of the
obtained pressure contours in Figure 5 (b) indicate that the
adopted boundary condition is correct and well-founded.

Better understanding of the effect of calculation of
static pressure distribution can be obtained with
comparison of the pressure distribution on the centerline
of the Couette flow domain. Figure 6 shows the
distribution obtained from the PPE after 100 iterations.
According to this figure, there is a good agreement
between the results and the actual pressure distribution.
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Figure 4: A presentation of mask matrix in considered model.
The continuous gray presents the inside flow region, dark pixels
are the outside points and the remaining are the coded boundary
nodes.
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Figure 5: Comparison of (a) the real pressure contours and (b)
the pressure distribution obtained from static PPE formulation.

It is evident from (1) and (2) that the momentum and
continuity equations obtain only the values of the pressure
gradient, hence the calculation of pressure values from
these equations may be somewhat offset. Considering this
offset, in order to obtain comparable curves in Figure 6,
the mean value of whole pressure distribution obtained
from the primitive formulation of the PPE is set equal to
that of the standard pressure distribution. This is the main
reason for the different zero regions outside of the flow
domain (at location greater than +1, lower than -1 and
between -0.2 and 0.2).

To be confident of the pressure distribution results and
to find the number of iterations required for obtaining the
most precise estimation, the estimated pressure is

calculating a normalized error. The mean normalized error
considered for this comparison is defined as follows:

_l_g ‘Pi “131‘]

i=! Pmax = Pmin

(13)

Mean Normalized Error =

Here, p, is the calculated pressure, p; is the real
pressure, P, is the minimum and pp,, is the maximum

real pressure in the domain.
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Figure 6: Pressure distribution obtained from primitive (dashed
line) formulation of PPE and its comparison with the real
pressure (solid line) along the centerline of Couette flow
domain.
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Figure 7: Mean Normalized Error obtained from the static
pressure formulation of PPE.

Again, because of the offset in the calculated pressure,
first, the mean value of the whole domain pressure
distribution from these formulations is set equal to that of
the standard onme. Finally, the obtained p, from this

correction is used in equation (13). Figure 7 shows this
normalized error as a function of iteration number for 100
iterations. This figure shows that the pressure distribution
obtained from the primitive variable formulation provides
correct pressure distribution. On the other hand, the
primitive PPE is unstable up to 10 iterations and after 60
iterations, the solution comverges to the actual result.

_ Performing more iteration will provide better results from
compared with the standard pressure distribution by

these methods but would not change the order of
convergence. Repeating these experiments with smaller
grid size & shows similar results. It shows that in large grid
sizes the primitive formulation is stable.

4, CONCLUSION

In this paper, a solution for the Pressure-Poisson
Equation (PPE) on an irregular domain is presented. The

61 Amirkabir/ Vol.19 / No.68-A / ( Biomedical Engineering ) / Spring - Summer 2008 @@



Neumann boundary condition is adopted for the solution.
The primitive variable formulation for the extraction of
the Pressure-Poisson Equation is developed. The
challenging issue addressed in this study is using non-
staggered grid arrangement in the flow domain.
Satisfaction of the compatibility congition and oscillation
of resulting pressure domain are the shortcomings of the
solution of the PPE on this type of grid arrangements. An
appropriate discretization method for the PPE and its
appropriate boundary condition is developed. A specific
kind of discretization is considered to prevent the pressure
oscillation by sharing data with the adjacent grids. The
necessary boundary nodes for discretization are specified
and then classified in specific groups. The application of
appropriate boundary condition for the eight types of
boundary nodes together with the domain discretization,
leads to the satisfaction of the compatibility condition. A
specific mask matrix and boundary coding approach is
used to facilitate the application of the appropriate
equation on the irregular domain. The presented method is
applied on a standard test problem of an irregular flow
domain. It is shown that the actual pressure distribution is
achieved by applying the described scheme.
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