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ABSTRACT

The symmetric curvature and associated curvatures of a vector bundle £ with connection V on a
manifold M with connection V were introduced. It is well-known that a total space of semi-Riemannian

vector bundle over a semi-Riemannian manifold can be made into a semi-Riemannian manifold. In this case,
the relation between curvatures of the Levi-Civita connections of £ and M was studied. Here, the relation
between symmetric curvatures of the Levi-Civita connections and their associated curvatures of £ and M

is studied.
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1. PRELIMINARIES

By manifolds we mean C* real manifolds. The vector
bundle (£, 7, M, F) will be denoted by

7w E— M,

with fiber £ over pe M. VE will denote the
vertical bundle of F. Ii is well known that VE is a
subbundle of TE [5]. For £, € E with z(&) =7z(n)
we set 1,77 =4 _ (E+tn). Cleartly I;ne(VE),,
and it is called the vertical lift of 77at &.

To each connection V on K there corresponds a
horizontal subbundle H (of TE), a connection map
k :TE——VE , and a parallel system P [6]. Let

peM ,uel M and &€ E,. There exists a unique
vector on H ¢ such that its image under 7z, is u. This
vector is called the horizontal lift of u at &, and is

denoted by ;g . The set of all sections of a vector bundle

E—— M will be denoted by T'E .
Let £ be a Riemannian vector bundle over M . The

vector bundles E” (dual of E),
L(EY(=Hom(E,E)), ® E, A"E (1<r) canbe
made into Riemannian vector bundles in a natural way.

Let M be a Riemannian manifold, a submanifold N

of M is also Riemannian manifold. Let V" and V"
denote the Levi-Civita connections of M and N,
respectively, and E be the restriction of 7M on N (or
equivalently, F be the pull-back of TM over the

inclusion map #: N—> M ). The pull-back of V¥,
which is a connection on £ will be denoted by the same
symbol V. Let p,: E——> TN be the orthogonal
projection. Then for each U,V € X(N)cTE

VoV =p (Vi V).

Let TN be the orthogonal complement of the vector
bundle TN in E, and p,:E—> TNt be the
orthogonal projection. The map
7 TN @ TN—> TN which is defined by

x(U,V)=p,(VyV)=VyV -VV,

is a symmetric tensor, called second fundamental form
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of N {4].
A.The symmetric curvature tensor [31
Let V be a torsion free connection on M . Since

2¥/,V is a bilinear map with respect to vector fields U

and V , it can be written as the sum of its symmetric and
antisymmetric parts as follows

2V =V +V,U)+(@S -V U)

=V +V,U+[UJV ]

The symmetric bracket of two vector fields U and V/
on M is defined and denoted by

UVl =V, +V,U.
For U,V € X(M) and [ € C*(M), we have

fUVT = fIUVT +V (U,

Definition 1. Let V be a linear connection on M . A

vector field U is called a geodesic vector field if its
integral curves are geodesics.
Locally, geodesic vector fields exist on any manifold.

In fact, for every point p €M and veT M there
exists a local geodesic vector field U that is defined on a
neighborhood of p in which U, =v. A vector field U

is a geodesic field if and only if [U, U] =2y, U =0.

Let E be a vector bundle with the connection V over
M and let V be a torsion-free linear connection on M .
For every section Z € I'(E) the bilinear map

VVZ : X(M)x X(M)—>T(E),

defined by

VVZU, V)=V ,V, Z —~V§UVZ,

can be written as the sum of its symmetric and
antisymmetric parts as follows:

VWZ UV )=
1

RUV)=V,V,Z+V,V,Z-V 7

[wrr—

Note that R,(U,¥") is not tensorial in argument Z .
But it is tensorial and symmetric in two arguments U,V .
The curvature tensor R does not depend on the choice of
V ,but R® does depend on V .

For geodesic vector fields we have a simple relation for

computing the symmetric curvature. If U is a geodesic

vector field on M , then for any section Z of E, we
have

R,(U,U)=2V,V,Z.

Definition 2. Let V be a connection on a vector
bundle E—> M and V be a torsion free connection
on M. A section Zel'E is called affinewise if its

symmetric curvature tensor vanishes, i.e., R; =0. In

particular, an affinewise section of E =TM is called
affinewise vector field.
The set of affinewise sections is a linear subspace of

TE . In particular, the zero section is affinewise.
Example 1. Let Z be a parallel section of vector
bundle E . Since for every vector field V', V,Z =0,

we find R, =0. Thus, all parallel sections are

affinewise.

Example 2. Consider a trivial vector bundle

E =R"xV with the trivial connection on it. A section
of E is a smooth map Z :R"—> V. By a routine
calculation we find R, =0 if and only if Z is an affine
map. So affinewise sections of £ are the same as affine
maps.

Knowing the second fundamental form 7 of N, we

compute symmetric curvatures of N in terms of the
corresponding curvatures of M . For U,V € X(N) let

5 VY Z+V,V,Z =N, Z =V yZ){U, VT, [U, V1, be symmetric brackets on M and

1

E(VUVVZ -V, VyZ -V, Z 4V yZ)

:%(VUVVZ WV, Z -V Z)+

wry

1
-2—(VUVV Z -V, VyZ =V piZ).

The last expression in the parentheses is the antisymmetric
part of VVZ and is the curvature of V which is denoted
by R(U,V)Z . The first expression is the symmetric part
of VVZ and we call it the symmetric curvature of V
and denote it by R, (U,V), so

N, respectively. Then
WU,V =p(UV])
27U, VY=[U,VT, —[U, VI,
Lemma 1. Let R® and R® denote the symmetric

curvature tensors of M and N, respectively. Let
W'e X(M) and W e X(N) be vector fields such

that W'is equal to W on N . Then for each
U,V,Pe X(N) we have
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<Ry UV ),P>=<p, U}V )P>+
2<Viyy W P>+
<zU,P),nV W )>+
<zW ,P),m(UW)>.
Proof. Let U be a geodesic vector field on N , then
[U,UT, =0.50, [U,U],, =27 (U,U), and we have:
<Ry U, P >=<2V) V)W ,P >
=<2p, (Vi VW), P>
=<2V (VW UV )),P >
=<2V P >—< 2V (U W ),P >
= 2VIVIW ~V[Ag UL W' P>+

w'.P >——<2Vf,47r(U,W),P >
W' P>—

M
<Vwur

=R U, U),P >+<V¥

WU,
22U <mUW),P>R<aUW), VP>
- 5 M 7

=R, (U,U),P >+<V[U,U];{W P>+

2<ﬂ(UaW):p2(V(A;[P) >
=<R; (U,U),P >+2 <V, JV ', P>+
2<mU,P),mUW)>

Since R* is symmetric with respect to the first and second
components, proof is complete.
B.Fundamental vector fields of a vector bundle

Assume that 77 : E——>» M is vector bundle. A map
F i E—3>FE is called a strong bundle map if every
fiber £,(p € M) is invariant under F If restriction of

F toeach F

v is linear, it is called a linear strong bundle

map.
To each strong bundle map F:E——>FE (not
necessarily linear) there corresponds a vertical vector field

of E (asection of VE ) which will be denoted by F and
is defined by

ﬁg = I.fF (&)
F is smooth.[1]

For example, if /=1, then iE is the radial vector

teE.

field on E . The set of all vertical vector fields on £ as
well as the set of all strong bundle maps on £, are

modules over C* () . From the definition of F and the

local representations of F' and F', we see that the map

F 1+ F is a linear isomorphism between the above
modules.

Let V be a connection on £ throughout the paper. To
A E——>TM (not

necessarily linear) there corresponds a horizontal vector

field on E (a section of H ) which will be denoted by A
and is defined by

Ae=Ad),
Ay is smooth. [1]

each strong bundle map

For example if £ =TM and 4A=1,,, then ; is
the geodesic spray of V . The set of all horizontal vector
fields on E as well as the set of all strong bundle maps

from E to TM are modules over C*(E) .

From the definition of A and the local representations

of A and A it is clear that the map A+> A is a linear
isomorphism between these modules.

Foreach X € 'E (resp. U € X(M)) X o7 (resp.

Uor) is called vertical lift of X (resp. the horizontal

lift of U ) and it is denoted by IX (resp. U/ ).
[11 Let F:E——>FE

A: E——> TM be linear strong bundle maps, and R
be the curvature tensor of V then for X,Y e 'E and
U,V € X(M) we have

Propesition 1. and

[IX,IY]=0 )
[U,IX1=1V, X @)
UV 1=[UV]-RUV) 3)
[IX,F]=IF o X )
[U,F]=V,F 5)
[IX,A]= Ao X -V, X 6)
[U,4]1=L,4 -RU,A()() @

C.Lift of Riemannian metrics

Let E be a Riemannian vector bundle, and M be a
Riemannian manifold and V be a connection on E . We
can lift the metric of M to E as follows:

UV el E, <dy>=<k@),k@)>; +

<drn@),dz@) >,

Thus E becomes a Riemannian manifold. At each
point £ € E, the horizontal space H ¢ and the vertical

space (VE), are orthogonal to each other, and inner
product on H, and (VE), are the same as the inner

T, .M and E

(&) #(#) under the isomorphisms

products on

37

Amirkabir/ Vol 16/No. 63-E/( Basic Science and Applied Engineering)/ Winter 2006 @@




7, H——>T oM and k:(VE);—> E .

respectively. So scalar products of horizontal and vertical

vector fields of F are zero.
From now on, we assume that the metric of the vector

bundle is parallel with respect to V', namely for every

X,Y €TE and U € X (M) we have
U<X,Y>=<V,X,Y>+<X,V,¥>.

D.The Levi-Civita connection of E
Let ¢(E) be the vector bundle over M, whose fiber

at each *(E,)
L(A*TM,#(E)) be the vector bundle over M, whose
fiber at each point pe M is L(/\ZTPM, (E,))

(space of linear maps between these vector spaces). Then

peM is and let

point

R (the curvature tensor of V) is a section of
L(A’TM,4(E)). As mentioned above, #(E) and

&(T'M) are naturally isomorphic to AE and A°TM |
So we use them interchangeably, and assume that

R eTL(A*TM, A E).

Then

R eTL(ANE,NTM).

or

R eTL(A’E, o(TM)).

which is defined explicitly and uniquely by the
following formula

<RUVYX)Y >, =<R' X YUV >y
where XY eTE, UV eX (M).
For example if £E=TM , and V =V (the Levi-

Civita connection of M ), then R™ = R . In other words,
R is symmetric with respect to the immer product of

ATM .
Theorem 1. [1] Let V denote the Levi-Civita

connection of E. I F:E——FE and
A:E——>TM are linear strong bundle maps and
X, YeTE U,V € X(M), then

§1XIY203 (8)

IV =ViV —%W'), ©)

— = V=5

szU:"z“R (., X)), (10)

VP =IFoX, (1n

- = l ==

VA= A0X+5R (, X)(A(Q), (12)

1

VoF =V F +=RGFOU), ()
= = 1l

vyd =V, 4 —5R(U AN (14)
Theorem 2. [l1] Let F:E——F and

A: E——> TM be linear strong bundle maps, and R
be the curvature tensor of V then for X,Y € 'E and
U,V € X(M) we have

[IX,]YT =0 (15)
(X, UT =R (, X)) +1V, X (16)
[UVy =[U,VY a7

[IX,FT =IF o X (18)
[U,FT =V F+R"(,F(O)U) (19)

PR

[IX, Al = Ao X + R"(,X)A()+V ,, X (©0)

[U. A =L, 4,
where L, is defined by Ly, =2V, —L; .[3]

Proof. The proof is by direct computation and using

@1

Proposition 1 and Theorem 1. We compute relations
(17) and (20).

From definition of symmetric Lie bracket, we have

[U,VY =2v5V -[U, 7]

By putting relations (3) and (9) in above equation
conclude that

U7t =23V s ROT)- UV 1+RTF)

=2VyV -[UV1=[UJVT.
Similar to above computation and by using relations (6)
and (12) we have

[IX AT =25 4 ~[IX , 4]
= 2(A =X +=R X NAO) -
(AoX ~V, X)

2. SYMMETRIC CURVATURE TENSOR OF E

Theorem 2. Let Rs, R’ and R*M denote the

. v ) M
symmetric curvature tensors of V, Vo oand V ,

respectively.  Assume that X,Y,Ze€l'E  and
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U,V,W e X(M). Then
R L(IX, 1Y) =0, 22

EH(EJ',LX);%R*(X,Y YU )+

TR COR GO

R CNR GO -V - @3

R UXIY) -——i—R*(-,X)(R OO+

;}R CORGXO)),

24)

R0 =2V R X ) -V, R (X))

~SRORC X NO-5RE R EXON0

+_;_R*(-,X)(v,’}’V)——2—I(R(U,V )X )+

LECOO) R VX0, )

R U V)=IR, UV >+%VUR*(-,X W )+

1

-}R(V ,R*(-,X>(U>>(')+§R*<O,VVX)<U)+

SR GV ) - R XUV T
(26)

Fﬁ(ﬁ,ﬁ“):R,;’M(U,V)-—%WW’%

%W—%R*(-,RW,W ONT) -

%R*(-,R(U,W YV )-RT V7 )~

RU,V,W). Q7
Proof. The proof is by direct computation. We
compute the relation (27).

SVRC0)-RUR GOV )0 -

From definition of symmetric curvature tensor we have
R U V)=Vl + ViVl =V 5 W (%)
From equations (9), (13) and direct computation we

get
VoV =VEVIW ~ ROV ) -

].N
SV RTT) -1 R CRE T IO,

By interchanging of U and V' in above equation we
obtain V7V ;W . Also we have

M
VIUV]W V[U,V}W -

6[5 i =

—2~R wyrw).

By putting the above relations in (*), the proof of

theorem is complete.
Corollary 1. If the curvature of V vanishes,ie.,

R =0, then
R z(IX ,IY Y=R’»(U,IX ) =0,
RzUJV)=IR;UV),
Rw (@) =RMU V).
Corollary 2. Let Z be a parallel section of E . Then

1Z is an affinewise vector field on £ .
Proof. Since Z is parallel, then R(U,V)Z =0 for

all U,V € X(M). Therefore we have
<R'(X,ZYU)V >=<RU V)X ,Z >=0

where X eTEUV e X (M).

From above equation, we conclude R"(-,Z)=0.
Thus, from relations (22),(23) and (24) we have
R X, 1Y) =035 ,(IX,U) =0 and
R* Iz(ﬁ, V)=0.So, IZ is an affinewise vector field.

Corollary 3. If IZ is an affinewise vector field on F,
then Z is an affinewise section of F . The converse is
trucif R=0. '

Proof. Let [Z is affinewise,
EIZ(IX,IY) = E;a([X’U) :—R;;IZ(U’ Vy=0,

following equations is holds

R*(X,Z)<U>+—;-R*(-,X YR (.Z)U)) -

From relations

RGZYR(X)HU)) =0,
(28)
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VR"(~,X)(U)Z =0, (29)
VyR'(ZYV)+V, R (,ZYU )+
R*(,V, ZYU)+R"(,V,Z)V ) -
R°G,ZYWUV T)=0,

(30)

R:UV )—i—{ﬁm(%

RW,R*(Z2)U)NO} =0
(3D

Setting X = Z ,we can conclude that

R(,ZNR(,Z)U)) =0.

Forall Y € TE , we get

<R'Y,ZYU)LR'¥,Z)U)>=

<R'Y,ZYRY ,Z)YU),U >=0.

So,

R'(,ZYUy=0.

From the above equation and (31) we find
IR, (U,V)=0,s0 Z is affinewise.

Conversely, if Z is affinewise and R =0, then
R" =0 . Therefore, from relations (22),{23) and (26)
we can conclude that E;12<'7’> =0, ie, [Z is
affinewise.

Corollary 4. If ﬁ is an affinewise vector field, then
U is affinewise vector field. Conversely, if U is an

affinewise vector field and R = 0, then —l—/: is affinewise.

Proof. Let 5 be affinewise, so the following relations
hold:

V, R)W U+ (Vy RYV U )+
2RW ,V,U)+2R({V ,V,U)=0.
(36)

We canset ¥ = X in the relation (32), and obtain

R(,X)R(, X)U)) =0,

50

<R'(, X)R(, X)U))U >=0,

and then

<R, XYU),R(,X)U)>=0.

It means that R (-, X)({U) = 0. By definition of R
it holds if and only if R(:,U)(X)=0. From (35) we
find

YV W eX(M) R,V W)=0.

So, [/ is an affine wise vector field.

Conversely if R=0 and U is an affinewise then by

Corollaryl we conclude that U is affinewise.

3. ASSOCIATED CURVATURES

By contracting symmetric curvature we can find new
curvatures. This contraction can be done in two ways.

Definition 3. [4] Let {U.} be a basis of local vector
fields on M with the dual basis {@'}. For every vector
field Z , we assign a I-form @, as follows and we call it

the form curvature along Z -

@, U)=2 0 (R;(U,,U)).

Theorem 4. Let {U.} be an orthonormal basis of local

vector fields on Riemannian manifold M and suppose

R, XRCYUN+R YR (LX)NU)) =0, {X}are orthogonal local sections for Riemannian

(32)
R*CX)VIUY+T,R (X )U) -
2, R (X)) )~R' (Y, X)U)+
2L, R* (X)) =0,

(33)

ARY UNX)+2RU, R X NO+
RV R (XU N =0,
(34
ARSM W W )~R"(,RW ,U)NE ) -
R *('7R (V 7U)())(W ) - O,

(33)

bundle 77 ; E——> M . Then we have
— 1 e N
WIZ(V):"Z'Z{<U,~7VU,.R G2 )>+

<U,V,R'(,ZYU)>+<U,,R"(.V, Z)V ) >~

<U,R'GZ)U,VT)> =D <IX,,V

011 =5 L <R CZXULR DT >

. V)=a, )+~ <RE UN)RW U >

i

N
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.-%Z <SRGX )WV )LR (X)W )>

w,;(IY>=—;—Z{<t7T,VU,.R*<-,Y Y7 ) >

14

2<U,,V, R*(YYU,)>+

<U,R"(Y )V, )>+2<U,,L,R"(-Y )U,)

~<U,R'(,V, V)W) >}.

Proof. From definition of @, we have

@, () :Z<5i’k:lz(5i")+z<LX/"—R;JZ(I‘X,/"') >
i i

So, by using formulas (22)—(27) the proof can be

done.
Definition 4. [4] Let {U,} be an orthonormal basis

of local vector fields on the Riemannian manifold M .
For every vector field Z , we assign a vector field X, as

follows and we call it the vector curvature along £

X, =2 R;WULU,).

Theorem 5. Let {U,} be a orthonormal basis of local

vector fields on a Riemannian manifold A and suppose
{X,} orthogonal local sections for Riemannian bundle

77+ E——> M . Then we have

X{Z = {[R;(Ui;Ui)'*’VU,-R*(':Z)(Ui)—

SRULRCZXOO R Vg 200,

%R*(-,Z)([Uf,v,- ), 7

XITV—:

i

{XW - (vU,. R )(Ui 4 ) -

2R, o) =5 R GRU O} +

-;—ZR*(-,XJ.)(R*(-,X,)(W ) G

Proof. From definition of X,, we have

Xy = 2R U U) + LR X, X,

By (22), the second statement of above relation is zero.
Then (37) is hold from (26). Similarly, other equation can
be proved.
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