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S5-Conclusion Remarks
We have analyzed a two-echelon system for repairables with a central repair depot and
multiple inventory stocking centers. Our model extends the literature by allowing depot
replenishment lead times to be stoching center dependent and to have two kinds of defectives.
Our analysis of the model led to an exact evaluation of system performances. We have
shown that existing models have errors in evaluation of performance measures errors are
more meaningful when the depot stocking level is low.

6-Appendix A List of Notation

N: number of stocking centers in the system.

n: index of a stocking center,n=1, 2, .., N.

O: index of the central depot.

A, : demand arrival rate at center n.

A, : The replenishment order arrival rate at the depot.

r, :The per cent of type B defectives arrival at centern.

Sn: base-stock level at center n.

So: base-stock hevel at the depot.

O,: depot outstanding orders in steady state.

O,: Out standing orders of stocking center n in steady state.

I,: Inventory level at the depot.

I.: Inventory level at center n.

Ly: depot replenishment lead time corresponding to orders from Stocking center n.
n( ): probability distribution function of L.

,: stocking center “n” replenishment lead time for type B defective.

G, (.). Probability distribution function of L.

L, : trarsportation time from the depot to center n.

G, () : probability distribution function of L, .

W,.: random delay at the depot of replenishment orders from stocking center
n( ): Probability function of W,,.

W : waiting time of customers at stocking center n.

Yo W, + Ln,
H,(.): probability distribution function of Yn.
Bo : fill rate at the depot of replenishment orders from stocking centers.

Bn= Customer fill rate at stocking center n.
B,: backorders at the depot of replenishment orders from stocking centers.

By: Customer back orders at stocking center n.
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The fill rate service is equal to the probability of instock at a center, that is:

S, -1
B, = Pr{l, 1} = ) Pr{O, =k} 24)

k=0

4-Numerical Analysis

We use some numerical comparisxons to illustrate how significantly the difference in
DRLTs impacts the performance of the system. For simplicity, we consider a network with
only two stocking centers, which are identical in all respects except for their corresponding
DRLTs. Specifically the DRLTs from stocking center 1 are assumed to be 50 days (Constant)
and those from stocking center 2 to be 10 days. The demand rates at two centers are assumed
to be the same, i.e., A = Ay =5 units per year. We also assume thatr=1,=0.

For the system given above, we compare our exact model with two approximation
approaches we derived based on two existing models. Under both approaches, the stocking
center-dependent DRLTs are approximated as i.i.d. random variables across all of the
stocking centers That is, a DRLT, independent of from which local center a depot
replenishment is triggered, takes eicher 50 days of 10 days with equal probability. The
difference between the two approximate approaches is in how they treat stocking-center
replenishment lead times. The first approach uses sequentlal stocking-center lead times as
proposed in svoronos and zipkin (1991) [19], and thus will be labled as the SZ approaeh; and
the second uses i.i.d approximation for the stocking-center lead times as suggested in the
METRIC model, and will be labled as the METRIC approach..

Our model shows that the service levels at center 1 are worse than those at center 2; center
1 has a higher expected customer back order level and a lower customer fill rate. Assuming
that the trans protation time from depot to both stocking centers takes 2 days, Table 1 lists the
expected back orders and fill rates at the two stocking centers evaluated by the three methods.
Note that while E[B;] and E[B;] also (B; and B,) are different under our model, they are
identical under each of the two approximation models. Therefore, the table lists only E[B/]
and P, for the latter two models. One can see from the table that the SZ approach consistently
overestimates the service levels for center 1 and understimates those for center 2. Compared
with the SZ approach, the METRIC approach generates, in general, overly optimistic
estimates for the service levels.

Table (1) Performance Metrics and comparison.

Our model Sz approach METRIC

APPROACH

s, S S, E[B] E[BJ B B EBJ B | EIBJ B,
0 0 0 0.612 0279 0.000 0.000 0.445 0.438 0.000
0 1 1 0.162 0.045 0550  0.766 .000 0.083 0.645
0 2 2 0.032 0.006 0.871 0.962 | 0.104 0.659 | 0.011 0.928
0 3 3 0.005 0.001 0973 0.995 | 0.020 °0.916 0.001 0.99
0 4 4 0.001 0.000 0995  0.999 0.003  0.983 0.000 0.999
1 0 0 0207 0.118  0.000 0.000 0.000  0.997 0.158 0.000
1 | 1 0.038 0.012 0.831 0.894 0.162  0.000 0.012 0.854
1 2 2 0.006 0.001 0.968 0.989 0.025  0.863 0.001 0.989
1 3 3 0.001 0.000 0.995 0.999 0.004 0979 0.000 0.999
2 0 0 0.068 0.052 0.000 0.000 0.000 0997 0.059 0. 000
2 1 1 0.007 0.003 0.939 0.951 0.06 0.000 0.002 0.943
2 2 2 0.001 0.000 0.994 0.997 0.005 0945 0.000 0.998

0.001  0.996

We have 4 Performance measures, we can use AHP to achieve the best allocation.
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replenishment lead time Yn consists of a random delay at the depot, I .e,Wn and a
transportation time L,. The probability distribution of L, denoted by G, (.), is known, and

that of W, denoted by Fy(.), has been obtained from our analysis of the depot problem. Thus,
the distribution of Yn, denoted by H,(.), can be obtained simply by a convolution, That is,

H, =F, *G, (16)

Where * denotes the convolution operator.

Svoronos and Zipkin (1991) [19] show that the steady-state outstonding order caused by
type A defectives, denoted by Op, has the same distribution as the replenishment-lead-time
demand, that is, the number of customer demands (type A defectives) during a random time
period with distribution Hy(.). As a consequence, the distribution of Oy can be derived as
follows: conditioning on Y,=y, O, is a poisson random variable with mean value of (1-rn)
A,y . that is,

k
Pr{O, =k|Y, =y}=—“—‘:~—“—;£'—*—"1—)—exp<~<1—r,,>x,,y),k =0,1,. (17)

Simply by unconditioning, we have:
k
Prioy =1 = [ LB expi1-5, 0, )aH, )k =01, (18)

The steady-state outstanding order caused by type B defectives denoted by On,, isa
poisson random variable with mean value of p,.

t, =rmxi, xE[L}]

“Hn k 19
Pr{OnQ = k} = S”L_T(—(‘B‘Ul“ ( )

Now, we can obtain the distribution of O,, That is, the number of Outstanding orders of
stocking center n in steady state.

Pr{on:k} = Pr{onl: k} XP:’{01\2=O}+---+ Pr{OnI:O} XPI'{OH2=k}

:Z:=O Pr{Onl = X}xpr{OnZ = k—X} (20)

Having specified the steady — state outstanding orders, the inventory level distribution can
be computed through:

In: Sn' On (2 1)

For any given stocking level S,; and we can further compute the expected on-hand
inventory and expected backorders by:

Sn

E[l 1= ) (S, = 9p, {0, = j} (22)
1=0
E[B,]= ) (S, —)Pr{0, =} (23)

I=s,
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characteristics of the system can be obtained by letting t, — «. Let A, (1) denote the resulting
limit of A, (ty,ta+ 1). From (7), we then have,

N N

A, (rt=S, —ZQi(TT+ZRi(’cr+ 8, (tt (10)
i=1 i=1

where, Qi(t) and Ri(v)for 1,i=1, 2, .., N, are the limits of Q;, (v) and R, (0, respectively.

Qi(r) and Ri(r) are mutually independent poisson random variables with mean values of (1-1;)
rq;(v) and (1-15) Ari (1) , respectively, where,

g;(it= '[fl—Gi(s)]ds (1)
and
r(rr= J:Gi(s)ds (12)

Furthermore, because the sum (convolution) of independent poisson random variables is
again poisson, we can write (10) as

A, (rt=S, - Q(x(+ R(x(+8, (1t (13)

where, Q(1),R(1), and 6,(x) are mutually independent; Q(r) and R (1) are poisson random
variable with mean values of Z: (1-1)Aq;(r) and Z: (1-r)Ar(7) , respectively.

The steody-state version of (6) is given by:
W, st} = {A, (21} (14)

It is easy to see from (13) and (14) how the random delay experienced by a stocking —
center replenishment order is affected by the distribution of its own correspohding DRLT.
Because both Q and R are common to all n (n=1, 2, ..., N), W, , for any given n, is a function
of n only through G, () in (13). Specifically, if the depot replenishment lead time from
stocking center n is (stochastically) shorter, the probability that the depot will get an
additionel unit of inventory t time units after an order arrival from stocking center n (i. e.,
8a(v)=1) is higher and, as a consequence, the probability that a replenishment order from
stocking center n is to be delayed move than « is smaller. This reinforces out intuition as
discussed in the introduction section.

Formally, the distribution of the delay enperienced by orders placed by centern can be
computed as:

F, (tt=Pr{W, <1} =Pr{A, (t21};
=Pr{S, - Q(z(+ R((+d,(trr = 1};
=Pr{S, —Q((+ R( 21} + G, (x0)Pr{, — Q(r(+ R{z( = 0}.

(15)

3-Performance Measureds-The Stocking Center Problem
3-1- The steady-state Distribution of cutstanding orders
Consider any stocking center n, n=1, 2, ..., N, for type A defectives. In steady-state, its
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2-2-Probability Distribution of the Random Delay at the Depot

In this section, we derive probability distribution of the random delay experienced by
replenishment orders from any given stocking center n. To that end, we will derive first the
transient properties of the system and then the steady-state results.

For transient analysis, we assume that the depot starts with so good parts on hand at time 0.
Focus is made on a typical order from center n arriving at the depot at time t,, (i. e., t, is a
demand epoch of center n).

Let Wy (tn) denote the random delay experienced by this order. For > 0, we wish to obstain
pr {wn (t.) <t}.Let A, (to,ta+ ), be the depot inventory level at time t,+7 plus the demands
arrived in [tp,t,+1], which can be interpreted as the invntory available at time t,+ ¢ at the
depot for This specific replenishment order. Thus, we have (Wang et al 2000) [10]

Wyt st {A, (t,,t, +1) 21}, 6)

Ay (ty,tht7) can also be considered as the depot inventory level at time t,+7 , assuming
that the depot stops satisfying all the center orders which arrive onof after time t,. To obtain
the distribution of Ay(ty,ty+7 ), we first note that each center order that arrived before time th
reduces Ay(th,t;t7) by one unit. Upon their arrival, whereas each depot replenishment order
filled by time t,+7 increases A, (tntat7 ) by one unit. For each center order, there is a
corresponding depot replenishment order. Thus, we define

Qi, (7) = the number of orders that arrived during (o,t,) from stocking center i and whose

corresponding depot orders have not been filled by t,+7 ;
Rii, (r) = the number of orders that arrived during (t,,t,*+7 Yfrom stocking center i and

whose corresponding depot orders have been filled by t, + 7 .
on(t)= 1, if the depot order corresponding to the  specific order at time t, is filled by t, +
T
on( 1 )= o,otherwise
Then, according to (Wang et al 2000) [20] we have the following inventory balance
equation:

N N
Apltyty + D=8, = 37" QT+ Y~ Ry, (148, (ur @)
where
1) Qi (DR (1), =12,.,N,and5, (v) are all mutually independent.
2) Qim(1),andR;  (1),i=1,.,N, are poisson random variables with mean values of

(1-13) A, (D(and(-1)Nn, (1), respectively, where
Qi (rr= £ [1-G(t, +t—5)]ds = J:+ [1-G;(s)lds 8

Lt (to= ‘[Gi(T _S)ds = fG,.(s)ds 9)
i , with probability of G, (1),

3) O,(1) =
0 with probability of 1-G,(x).

Because Equation (7) holds for every demand arvival epoch t, of center n, the steady-state
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2-Performance Measures-Th Depot Problem
2-1- The steady-state Depot Inventory Level Distribution

We start by analyzing the steady-state behaviour of the depot inventory system whose
outstanding replenishment orders correspond physically to the defective items going through
their defective lead times and their repair processes. Let Oo be the number of the depot’s
outstanding orders in steady state. Consider the depot orders triggered by the demands from
stocking center n. Because the replenishment lead times are assumed to be independent and
indentically distributed, the outstanding orders form a queue in an M/G/w system (scarf
1958) [14]. The number of outstanding orders corresponds to the queue length, i. e., the
number of busy servers. Applying palm’s theorm (Palm 1938) [13], the steady-state number
of depot outstanding orders from stocking center n is simply a poisson random number with a
mean value of (1-1,) xhy.x E[L,]. Note that although in aggregation the repair facility serves
N streams of orders with arrival rate A,(n=1, 2, .., N), the order streams may be seen as N
independent M/G/o queues. Therefore, the total number of depot outstanding orders is the
independent sum/convolution of those corresponding to all the stocking centers, which is

again a poisson random variable with the mean value of p, = Zil(l ~1,)A,.E[L,]. Given the

distribution of the outsanding orders, the steady-state distribution of the inventory level can be
found using the relationship of:

Io: So - Oo (1)
Therefore, the expected on-hand inventory at the depot is:

Sy -1

j
E[51= BI(S, - 05)"1= ) (8o~ N exp(-u,) )
j=0 )

and the expected backorders are:

o

J
E[B,]=E[(S, -0y) 1= ) (J—SO>%;’—exp<—uo> 3)
J=5,+1 ’

The average delay at the depot of the replenishment orders from all stocking centers can be
calculated, applying Little’s Law, as:

E[B
SUARIELS “)

o]

But, as we mentioned in the introduction, the replenishment orders from different stocking
centers actually experience different delays at the replenishment ordrs from different stocking
centers actually experience different delays at the depot, which will be derived in the next
subsetion.

It is important to calculate the probability of an order from any stocking center being
satisfied without delay, it is called fill rate:

S, 1 i
Bo=prily=1}= ) %‘;—exp(—uo) (5)

J=0

Note that although replenishment orders from difeerent stocking centers will experience
different random delays at the depot, they actually have the same fill rate.
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Because the stocking centers replenishment orders are triggered by independent poisson
demand processes, they merge into a poisson demand process at the depot with the arrivel rate

of 2, =Zi](1—r“)xn‘. Whenerer a type A defects occurs, it is sent back to the depot,

whenever the depot receives an order from a stocking center, a corresponding depot
replenishment order is automatically placed with the repair facility and this replenishment
order will be delivered to the depot good-part inventory system when the corresponding
defects part is received and repaired. A depot replenishment leadtime (DRLT) includes the
repair time and the defective lead time (as defined in the Introduction). We assume that the
DRLTS are “stocking-centerwise” i.i.d.random variables. Let L, denotes the DRLT
corresponding to the orders triggered by the type A demands at stocking center n , and G,(.)
be the probability distribution function of L.

A stocking center’s replenishment lead time for type A defects, consists of a random delay
at the depot and a transportation time from the depot to the center. While the latter can be
random, it is assumed to be sequential, i. e., orders shipped to the same stocking center donot
cross in transportation. We denote the transportation time to center n and its probobility

distribution function by 1, and G, . respectively.

A stocking center’s replenishment lead time for type B defectives, consists of a random
delay at the same stocking center, and it is shown by L, and its probability distribution

function is shown by G/ (.).

Our main goal is to characterize the system performance for any given stocking policy
{Sn: n= 0,1, ..., N}. We will follow the usual approaeh of decomposing the two-eehelon
system into a depot subproblem and a stocking center problem. The connection between the
two subsystems is the random delay at the depot experienced by replenishment orders (from
type A) from the stocking centers. The distribution of this delay will be obtained through the
analysis of the depot problem. For reader’s convenience, all notation defined in this paper is
listed in Appendix A.

Figure 1 illustrates the topology and material flows of a service part network obout which
the following assumptions are made.

Assumption 1. The service network has a two-echelon structure with a central depot at the
top echelon and multiple inventory stocking centers at the bottom echelon.

Assumption 2. Each stocked item is considered in isolation.

Assumption 3. Demands for good units occur at the stocking centers, and are generated by
independent poisson processes which capture random failures of parts in the installed base of
machines supported by the stocking centers.

Assumption 4. Corresponding to each demand for a good part, Stocking centers receive a
defects one from the customer. Type A defectives are passed on the central depot for repair
and inventory replenishment. Type B defectives are repaired on the stocking centers.

Assumption 5. Customer demands are backlogged when a stocking center is out of stock.

Assumption 6. Fortype A defectives, The stocking centers replenish good (repaired) parts
from the depot using a one-for-one replenishment policy.

Assumption 7. The depot fills stocking centers’ replenishment orders on a first-come-first-
serve basis, and a replenishment order is backlogged when the depot runs out of good ports.

Assumption 8. The DRLTs corresponding to a given stocking center are independent and
identically distributed; DRLTs corresponding to different stocking centers are independent
but may be distributed differently.

Assumption 9. Depot repair capacity and stocking centers repair capacity are unlimited.

Assumption 10. Lateral transshipments between stocking centers are not allowed.
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alternative evaluation approach that is exact, albeit under the assumption of constant lead
times. Svoronos and Zipkin (1991) [19] study a model with stochostic lead times that are
generated exogenously, but preserve the order sequence (referred to as sequential lead times),
they derive procedures to evaluate exact system performance. Very recently, wang et al.
(2000) [20] study a two-echelon system with stocking-center dependent depot replenishment
lead times for one type of defectives. Other extensions of the METRIC model frame work
include Deuermeyer and schwarz (1981) [18], Axsater (1991) [3], and chen and zheng (1997)
[4] all of whom cohsider batch-ordering inventory policies. Lee (1987) [10], Axsater (1990)
[2], and Dada (1992) [6] who study lateral transshipments among stocking centers. This list is
not complete. Interested readers are referred to the comprehensive reviews of zipnin (1999)
[21].

The purpose of this paper is to generalize stocking center dependent DRLTSs for two kinds
of defects. The paper is organized as follows: the model and notation are defined in section
2.In section 3 we derive the performance measures for the depot problem, and in section 4 we
derive the performance measures of stoching center problem, section 5 discusses our
numerical and comparison.

1-The system, Assumptions, and Notations

Consider a two-echelon system for a single repairable part that consists of a single central
repair depot and N inventory stocking centers. Customers arrive at center n (n=1, 2, ..., N)
according to a poisson process with rate An demands across different stocking centers are
independent. There are two kinds of defects, type A defects mustbe repaired at the central
depot, and type B defects must be repaired at stocking centers. 1, percent of defectives that
arrive at stocking center n, have type B defects and (1-r,) per cent of these defects have type
A defects and must be repaired at the central depot. The system operates according to the so-
called one-for-one replenishment policy, 1i.e., the continuous time base-stock policy. Under
this policy, the inventory position, which is the on-hand inventory plus outstanding orders
minus backorders, is kept at a constant base-stock level by replenishing one unit immediately
upon receiving a unit demond. The base-stock level at stocking center n is s,. Arrival center
in a demand is satisfied with a good part if available, backlogged otherwise. Upon seeing the
demand, the stocking center immediately places a replenishment order with the depot, which
is satisfied immediately with a good part if available, backlogged otherwise. The depot
satisfies orders on the FCFS basis. Also stocking centers satisfy orders on the FCFS basis for
each type of defects separately. While demanding a good part, each customer returns a
defective one to the stocking center with a possible delay. Type A defects parts are shipped
back to the depot facility for repair. After being repired., these items replenish the depot good
part inventory. Figure I depicts the material flows in the service parts net work.

Deprt
Repair |
Teater N

ré Ceat
ey
1
“~ 3
eyt Inventos v,
0 ) Gemter Y
s
'\
~— \ K
\\
b
i
\
3
i

Type A defeetives / /

e

/

’
i
’

,
It
1
'
v
h
'

et
| / A
+ ~
: .

Gand part Now Delective flaw
e b et v e

Figure (1) Material flows in the service network.
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Abstract
, Consider a two-echelon repairable inventory system consisting of a centeral depot and multiple :
| stocking centers. There are two kinds of defective, type A defects must be repaired at centeral depot, :
and type B defects at stocking centers. The centers provide parts replacement service to customers
. and the depot fills center replenishment orders on a FCFS basis.
‘ Type A defects that are received at the centers are passed to the depot for repair and depot E
! inventory replenishment. For this system, existing models (for exemple, METRIC model) usually
assume that the depot replenishment lead times (DRLTS) (for type A defects) are Li.d., which
! however, doesh’t fit well into the service part logistics system, that motivated this research. Because
' the DRLTs consist of the sum of repair times, defective return times and transportation times, they :
are different across stocking centers which are located globally. We study the impact of such center-
! dependent DRLTs on system performance. We show that for such systems using the i.i.d. DRLT .
' assumption introduces errors in estimating system performance. :

Key words

Introduction

Multi-echelon service parts inventory management is one of the most successful areas of
operations research application. Mathematical models have been implemented for many large-
scale systems and have had a significant impact on performance, pioneered by the METRIC
model (sherbrooke1968) [16] for military applications, the most recent work has addressed

‘commercial service parts logistics systems (e. g., cohen et al. 1990 [5], Hopp et al. 1997 [9]).

The METRIC model uses results from queueing theory, (i. e., palm’s Theorem (palm
1938) [13] and little’s law (Little 1961) [11] to evaluate the system performance metrics of
average inventory level and expected customer backorders at each inventory location. The key
idea of the METRIC model approach is to approximate the distribution of a stocking center’s
outstanding orders, in steady state, by a poisson random variable whose mean is the product
of the average replenishmet leadtime and the average demand rate. This approximation turns
out to be robust.

Due to its implementation success, The METRIC model has received considerable
academic attention. Simon (1971)[17] and shanker (1981) [15] provide an exact analysis of
the model under the constant leadtime assumption. Graves (1985) [8] develops a two-moment
approximation for stocking centers’ outstanding orders. Axsater (1990) [1] develops an
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