3" f. is uniformly bounded. Hence, by theorem 2.9, the series > eaf, is exponentially

convergent, but it is not uniformly convergent on X.
ax
(iii) For n=123,..., suppose that f, (x)=3—2— and g, (x)=
n

X Be—ax
, where 0<a<r. The sequence

3
{e, ¥, is monotonically decreasing and also uniformly bounded []gn(x]s(}——) , for each
ca

xeX and n=123,... ]. Hence, by example (i) and theorem 2.10, the series 2:=1gﬂfn is

exponentially convergent, but it is not uniformly convergent on X.
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Y;n,quz =dE, (anFm)<§§Z’ (14)

|

[ c.f. theorem 2.1.(ii) ], where M is a uniform bound for {g,}= . Let N =max{N,,N,} and

S.(x)= Z::lgk (x), (x). Now, by using Abel's lemma in [1], for n>m>N we have

[0 G)=Sum ()] =

b (O () e (6 () i@k(x)n-gm(x)mk(xj

k=m+1

b (o ()3 e () g0 (i q

=m+l

M G+ 3 o (6) i ()

=m-+l

S NS ISR ERCY RSP Y

s (o <x11—k§§m<xiir~*mk (<)

<OMFp )+ M[Fot G+ M S (e ()~ s )]

K2
= 3M[R,,, (x) < BMyE 5 ,x®9)).

Thus, by (14) and definition 1.3, we have
dg, (Sn,Sm)SHSMyf:m‘Fn “2 <g.

Now, use theorem 2.5.
Examples 2.11. In the following examples, consider X = [0,+%),Y = (=oo,+e) and £=7=0.

(i) For n=123,..., suppose that f, (x)=e—2, where |a|<r. Consider y as in example 1.2.(v),
n
let vy, =L2y, then for each xe Xand n=1,2,3,..., we have [f,(x)] < (yn,x(”o)), so that each f,
n

is exponentially bounded. Furthermore, |f,|, =dg, (f,.0)< —1—117”\(“2 Thus, E;”fn”}s, is

Cax . . [
= 1s exponentially convergent, but it is not

convergent. Hence, by theorem 2.8, the series Z

n=l

uniformly convergent on X.
3

(ii) For n=123,..., suppose that f,,(x):i2 and g,(x)=>—. The sequence {g,}=, is
n n

monotonically decreasing and since, dg (gn,O)Sl, so that g, —0 exponentially. The series
’ n
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Now, use theorem 2.5.
Theorem 2.9. ( Dirichlet's test ) Let X the a metric space and Y a Banach space. Suppose

., is a sequence of functions from X to Y. Let F, =2:=1fk and assume that {F, J is

uniformly bounded on X . Let {g,}=, be a sequence of real-valued functions on X , such that
g,1(x)<g, (x), for each xe X and n=123,..., and assume that g, — 0 exponentially. Then the

series Z:_lg,,fn is exponentially convergent on X.

Proof. Since g, — 0exponentially, then by theorem 2.1.(ii), we have |y, . ”2 —0, so that for

£>0 there is the natural number N,, such that forall n>2N,,

=dE,( n,0)<—8——, (13)

2M

where M is a uniform bound for {F, }~., . Let s, (x)= 22=lgk (x ¥, (x). Now, by using Abel's

lemma in [1], for n >m >N, we have

[0 ()=Sm (x] =

o G () g (6 () 3 e () »mi

k=m+l

< Mg (x)+ Mgy ()4 M i(gkoc)—gm ()

k=m+1

= 2Mg ,; (X)< (ZMYrgm”,o , x %) )
Thus, by (13) and definition 1.3, for n>m =N, , we have
de, (80.Sm)<|2MYE, o], <5

Now, use theorem 2.5.
Theorem 2.10. ( Abel's test ) Let X be a metric space and Y a Banach space. Let f.5, bea

sequence of functions from X to Y, such that anlf,, is exponentially convergent on X.

Suppose that there is a natural number N, such that

21“]( (x% <

n+l
Z fy (x% s
k=m

for all xe X and n>m=N,. Let {g,}", be a sequence of real-valued functions on X, such
that g,,,(x)<g, (x), for each xe X and n=123,.... Assume that {g, }, is uniformly bounded

on X. Then the series 2; g.f, is exponentially convergent on X.

Proof. Suppose that E =Y f, and F,,=F, -F,. By assumption, for ¢>0 there is the
pp n et : y P

natural number N, such that for n>m>N,,

Amirkabir/ Vol. 14 / No. 54-D / (Basic Sciences and Applied Engineering) Spring 2003 133




and d(xq.£)<s, we have

d(f(x), f(Xo ))5 d(f(X) fx, (X))+ d(fNe (X)vaE (Xo ))+ d(fNe (Xo )> f(xo ))

<dg i, )sxg( 2 (o) ]+§.+d& oy, )m{ - (d(xo,ﬁ))z}

2
<2d; (f.fy, )ex,{fa_52]+§-<a.

Since x,€ X was arbitrary, we conclude that f is continuous on X.

Theorem 2.7. Suppose {f, [~ is a sequence of functions on the real closed interval [a,b] then
the following assertions hold.

(i) Let a be a monotonically increasing function on the closed interval [a,b]. Suppose for

n=123,... the function f, is integrable with respect to a on [a,b], and f, — f exponentially
on [a,b]. Then f is integrable with respect to a on [a,b], and

b b
ffda:limffnda
a n a

(ii) Suppose for n=123,..., the function f, is differentiable on [a,b], and {f,(c)};, converges,

o0

converges exponentially on [a,b], then {f, }7, converges

=

n=l

for some point ¢ in [a,b]. If {f;
exponentially on [a,b] to a function f , and

f'(x)=li£nf[; x) (a<x<b).

Proof. Use theorem 2.2.
Theorem 2.8. ( Weierstrass M-test ) Let X is a metric space and Y is a Banach space.

Suppose {f, 7, is a sequence of exponentially bounded functions on X into Y, such that

Z; Ifa]l; is convergent, where |.|, =dg (..0). Then 2:21 f, is exponentially convergent

on X.
Proof. Let S, = Ezzl f, , then by theorem 2.1.(ii), for each xe X and n>m, we have

I8, 6)-Sn 0l S ltl= S, (x)0)

=m-+1 =m+l

k=m+l1 k=m+1

< ¥ (v?k,o,x(“é’)-—-([ ivi,o}x(")]-

Thus, by definition 3.1 and theorem 2.1.(ii), we have

n
T
ZYfk,O

k=m+1

dEr (Sn ’Sm)S

k=m+1

< Yll. -
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YO = ’Y;j’le s
Tm =Viy fy,, M=L2...K(@)-1,

ThR) = Y?Nk(n),f,,'

Then for n2 j>N,, we have

dff; ()£, (k)< dlf; () £y, ()1, () Ex, )+
+d(fNK(")~l (x),fNK(“) (x))+ d(fNK(n) (x)f, (x))
< (1,2 o by, x €9 Joeot by x 9 )t ey x2)

K(n)
=(ivm,x(")}

m=0

Thus, for j> N, and each xe X, we have

aley (e £(0)=tim af ()5, ()< frx ),

where y = Zz_oym e ¢?. Hence, for j=N,, we have

s, (6 £)<I, < Yl <5432 <.

m=0 m=]

This implies that {fj }‘;I converges to f exponentially.

Theorem 2.5. (Cauchy condition) Suppose Y is a complete space. Let {f, 7, be a sequence

of functions defined on X into Y. Then {f, ], is exponentially convergent, if and only if, it

is exponentially Cauchy sequence.
Proof. Similar to proof of theorem 2.4.

Theorein 2.6. Let {f,}7, be a sequence of continuous functions defined on X into Y. Let
f, —f exponentially, then f is continuous.

Proof. Fix x,e X, put s=sup{d(x,£):d(x,xq)<1}. For >0 there is the natural number N
such that if n > N, then

€

2
dEr(fn,f)<—§exp[~—r—2~sz]. (11)

Since fy, is continuous, there is 0< 5 <1 such that if d(x,x,)<8 then

d(sz (X)fNa (Xo))<§ (12)

Thus, for xe X such that d(x,x,)<8; by (11), (12), theorem 2.1.(jii) and the fact that d(x,£)<s
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(M) o o] S0 5

thus, for each xe X, {f, (x)}-, is a Cauchy sequence in Y. By completeness of Y, {f,(x)}7,

is convergent.
Define f:X— Y, by f(x)= lim f .(x). We claim that feEB,(£n,X,Y) and {f,}, converges

to f exponentially.
For ¢ >0, suppose {N,}7_ is a sequence in the set of the natural numbers, such that

(i) N,, <N, for m=123,....

(i) If j2N,, then dg, (f;.tx, )<27™¢ .
For n2 N, let
K(n)= max{m: N, <n},

T
Yo _Yle ’ ‘
Ym =Y;Nm+l,f m=12,...,K(n)-1,

Tr@) =T, Ergn)’
(c.f. theorem 2.1.(i1)). We have

"ymuz <2™Mg m=12,...,K(n) and n = N; (10)
Thus, for each xe X and n2N,, we have
d(t, (hm)<dlfs () fny, ()P dlEny, (g, )
etdfy, (x )le (x))+dlfn, (xkm)
<[y 1 oy x Ot x 9o fro, x69)

But by (10), we have
Dlvmly <lvol, + 2 2™ e=[ol, +e.
m=0 m=1

and since, ¢* is a Banach space, so Z:—oYm converges to an element ye ¢>. Thus, for all

xe X, we have
a(f(x)m) = lim d(¢ (ZY (’5] (x€9).

Hence, f€EB, (&1, X,Y).
Similarly for n>j2>N,, let
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Hence, f, —f uniformly.

Note 2.3. By theorem 2.2, we have the following implications:

uniformly convergence => exponentially convergence = pointwise convergence.

In what follows, we show that the converse of these implications are not true in general.
(i) Let £ be a function defined on the set of the real numbers, by

¢ (x)* x4—1 if x isinteger
- l_x] otherwise.
Where [xJ denotes the integral part of the real number x. For n=123,..., let
f, (x):{x—l}, for each real number x. Since, for each real number x we have
n
d(f(x)0)=|f(x)<1+|x|, and d(f,(x)0)=]f,(x)<1+|x|, for n=123,...; then by definition 1.1 the

functions f,f,,f,,...are exponentially bounded of rank r#0 relative to (0,0). Moreover

f,(x)— £(x) for each real number x. But {,}, does not converge to f exponentially. Since
by theorem 2.1.(iii), we have

It (x)-£(x) =d(f, &) E(x )< dg (¢, ,f)exp(-r-;-xz }

2

For n>1, let x="—7+—1,then
n

: 2 2
n2+l_l _ n?+1 ex “i n?+1 —ex __rf_ n?+1
n2 n 112 2 n2 2 n2

dg, (£,.)2

> exp(-—rz),

which shows that {f, }7, does not converge to f exponentially.

(i) Consider the sequence f,(x)=x/ndefined on the set of the real numbers, {,}, is a
sequence of exponentially bounded functions of rank r#0 relative to (0,0). For
¥s = 0.1/m.00,...) we have d(t, (x)0)=|x/n|= {y,,x¢?), thus

. .
dE,(fn,0)5|lYn||2=;“>0 as n-— oo,

Hence, f, — 0 exponentially. But {f, }, does not converge uniformly to zero.
Theorem 2.4. If Y is a complete space, then EB,(£,1,X,Y) is a complete space.

oo

n=l

Proof. Suppose Y is a complete space. Let {f, is a Cauchy sequence in EB,(¢,n,X,Y) then

2

for each xe X, there is the natural number N, such that d (f,.f,)< eexp[—-%(d(x,&))2], for

all n>2m2=N,. So, by theorem 2.1.(iii1), for all n=m =N, , we have
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a(t (x) g(x)= (e () gGe) + (1 - e (x) glx)) < ey x )+ (- 1)y x00)
= ((ty +(1- t)y), x(r’g)),
for all xe X ; hence, (ty+(1~t)y')e L{f.g).
Suppose vy is in the closure of T,(f.g). Let {y,};., be a sequence in I,(f,g) such that
Yo —y. Since d(f(x)g(x)< [r,,x"?), forall xe X and n=123,...; therefore,

d(f(x),g(x))s lim(yn , x("é))= (lim Yo x(r"i)) = (y, x(r’é)) .

Hence, yeT,(f,g). Proof for I,(f) is similar.

(i) Existence and uniqueness of y! and ¥t follows from theorem 12.3 in [2].
(iii) By (ii), definition 1.1 and Schwarz' inequality, we have

ke )i, 0

[Y?, e

<a, (f,gkxp[é‘(a(x,a)f].

Proof of (8) is similar.
We say that the sequence {f,}, converges to f exponentially (or f, —f exponentially), if
{f.J;_, converges to f in exponentially metric (for fixed r,& and 7).
Theorem 2.2. Suppose f,f,,f,,... are functions from X into Y.
@ If {r,};_, converges to f uniformly, then it converges to f exponentially.

(i) If {f,}"_, converges to f exponentially, then it converges to f pointwise.

(i) If X is bounded and, if {f,}7, converges to f exponentially, then it converges to f

uniformly.
Proof. (i) For € >0 there is a natural number N,, such that d(f,(x)f(x))<¢/2, forall xe X and
n=N,. Let y=(/200....), then d(f,(x}f(x))<e/2={y,x9), for all xeX and n=N,. So by

definition of T, (f,,f), we have
dg, (f..f)<|y], <& forall n2N, .

(ii) Suppose dg (f,.f)— 0, then by theorem 2.1.(iii), for each x e X, we have

a6, ()£ < . (f,,,f)ex,{;(d(x,g)f)% 25 oo,

Hence, f,(x)— f(x), forall xe X.
2

(iif) For e>0 there is a natural number N, such that dg (f,.f)< Sexp[—%—sz], where

s = sup{d(x,£): x € X}, thus by theorem 2.1.(iii), for all xe X and n=N,, we have

d(f, (b f(x))<dg, (fn,f)exp(g(d(x,ﬁ))Z]SdEr (f,,,f)exP[f;sz]< €.

128 Amirkabir/ Vol. 14 / No. 54-D / (Basic Sciences and Applied Engineering) Spring 2003



dg (f.g)=0, then by definition 1.3, there is a sequence f.f., in T,(f,g) such that
Iall, = dg, (£.2) = 0 and d(f(x)g(x)s [y, x9), for all xe X and n=123,... , thus

d(f(x)gg(x))s lirlln( o x(r’g))= (lir{n Yor x(r’F’)) = (0, x(”&))= 0
hence, f =g.
dg, (f.2)=dg, (s.f) since T, (f.g)=T\(s.f).
Finally for f,g,he EB,(¢,n.X,Y) by definition 1.3, there are sequences {v, ., in I;(f,h) and

{yn}’: in I;(h,g) such that |ly,|, — dg (f,h) and |y , e, (h,g). Thus

n

a6 ) A ) + Al )< 09 i xE9)= g 4,509,

for all xe X and n=123,..., therefore (yn +y'n)e I.(f,g), and using definition 1.3, once more
we obtain

dg (f.g)<

Y + Yo

, Sl +[vall,»

for n=123,... ; hence

dg. (f.g)< li;n( all, +

2-Main Results
Theorem 2.1. For f,ge EB,(£.1,X,Y), the following assertions hold.

Ya

2) = limfy, |, + limjy, |, =dg, (f,h)+dg,_ (h,g).

(i) The sets I}(f) and T, (f,¢) are closed convex subsets of £°.
(ii) There are unique elements v; € I} (f) and vi, € T;(f,g) such that

'y

b

; (6)

2

55, (f)=

dg, (6.2) =i, - (7

(iii) Forall xe X,

2

o)< e 5062, ®

2

A6 (eb) < g>exp[ (o a») o)

In general the inequalities (7) and (9) are true, if f and g are not exponentially bounded,
and T, (f,g) is not empty.
Proof. (i) Let v,y eI,(f,g) and 0<t<1, by definition 1.3, we have d(f(x).g(x))< (y,x(’*i)) and
d(f(x) () < by, x6), for all xe X, thus
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8
5=k (k=8/2)sa~(k~8/2)=]x,| - x,]. )
Now, since x;e A and x,¢ A, by (5), we obtain

JFGes) = £ca N2 G} = e ezl > (0 + bl )=  + o )= bl - o) 2 b-§-=8’

which contradicts (1) and (4). Hence A is empty.
(iv) Suppose X =Y is a normed algebra over the field of the complex numbers. Consider

EB,(X)=EB,(0.0,X,X). Let P(x)= 2;;0 a;x’ be a polynomial on X, then Pe() L EB:(%).
Because, we may choose

(]a I lall 2|a2l 6]a3’ 6]a4l (n —rln)!la"I,O,O,...].

’ » ? ERd
3 r4

Note that in this case, d(.,0)=|.|. In particular, if IT is the set of all polynomials on X then
I3 cﬂ EB,(X) [in uniform nonn] To see this, let feIl then there is PeIl such that

le(x)-P x)]<1, for all xe X, thus |f(x)| <|P(x)|+1, for all xe X . Let P(x)= 2?=oajxj , then for

f, put

2 s 3 4 *°

(|a +1, Ia1l 22| Sfas| sl ,(““1)’1%"0’0’___ .
T r

(v) Suppose X =Y is a Banach algebra over the field of the complex numbers. Consider

n
EB,(X)=EB,(0,0,X,X). Let exp(x)*—’z:_o-)—(—' then for ae X, the function exp(ax) is in EB,(X)
=0 n! _

for all r2 |a; put y = (L1L1,1,1/4,1/5,...,1/n,...).
In particular, if f:X— X, is a function such that for all xe X, |[f(x) <[exp(ax) for some
ae X, then f isin EB,(X) forall r>Ja| (this modifies the terminology).
Definition 1.3. For f,ge EB,(E,n,X,Y), define
T, ()={re 22 :a(e(x)n)< [r.x9) vxe X},
I.(fg)= {ye £2:d(f (x), g(x)) < (y, x(r’é)lee X},
dg, (f)zinf{jy”2 Y€ Fr(f)},
dg, (tg)= infﬂjy“z :ye T, (f,g)},
Note that T (f,g) is not empty, since for y, € I,(f) and vy, e T'(g) we have
af(x) g ()< d(E Gdm) + dlgle)m)< by x 9+ by x09) =y, + 7, x69),

hence, ;(f)+T(g) < L (f.g)-
Moreover, dg (f.g) makes sense whenever, f and g are not exponentially bounded, and

I, (f,g) is not empty.
Theorem 1.4. The set EB,(£,n,X,Y) under the distance dg_ in definition 1.3 is a metric space.

The metric dg_ is called Exponentially Metric.
Proof. Let f,ge EB,(£:n,X,Y), it is trivial that dg (f.g)20 and, dg (f.g)=0 if f=g. Suppose
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Examples 1.2. Consider the function f: X — Y.
(i) If f is bounded, i.e. diamf(X)<eo, then it is exponentially bounded of rank r relative to

(¢,m) for all real number r, and each &€ X and ne Y. To see this put d = diamf (X)-+ dist(n,f (X))
,and y = (d,0,0,...) in definition 1.1. In particular, each constant function f isin EB,({,n,X,Y).
(i) Let ge EB,(En.X,Y). Let d(f(x)n)<d(g(x)n) for all xe X, then f € EB,(En,X,Y).

(iii) Suppose X and Y are normed linear spaces over the field of the complex numbers. If f
is uniformly continuous, then it is exponentially bounded of rank r relative to (&n) for all

r#0, Ee X and neY. To see this, first we claim that for uniformly continuous function
f:X — Y, there are a,b >0, such that

fcfj<a+bfx] forall xeX.
Thus,
d(f(x)m)= ”f (x)- nn <|nf|+a+ b”&” + b“x - &" forall xeX.

Now, take y to be (a+ |||+ bJi]. b/ r,0,0,...) in definition 1.1. To prove our claim, consider a
uniformly continuous function f . Without loss of generality, assume that f (0)=0 [Otherwise
define a new function g:X — Y by g(x)=1£(x)-£(0) 1.

For >0 there exists §>0 such that for x;,x,eX,

“xl —x2n<5=$”f(x1)——f(x2m<8. (1)
Puta=e¢, b= —2—65 and consider xe X . If “x“ <& , then by (1) we have
le(x) = Jf(x) - £(0) < e <a+blx].
Put A={xeX:|x|25 and |f (x)|>a+b|x|}. We claim that A is empty. Assume on contrary
that A is nonempty, then the set B =ﬂ[x”:xe A} is also nonempty}. Let k =inf B and consider

ae B and x,€ X, such that

O<5£kSa<k+% and ”xluza. (2)

let t=

K282 4nd x, =tx; . Since 0<t<1 we have
o

&
[l = i = to =k == <k, 3)
thus, x, ¢ A. On the other hand, by (2) we have

T =xa]= (- tlo = 0.~ (k - 8/2) < (k + 8/2) - (k - 8/2) =3 (4)

and also, by (2) and (3), we have
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Abstract

In this paper a new metric (called Exponentially Metric) is introduced on functions from a
metric space X into another metric space Y. Exponentially metric can be defined on a large set of
Sfunctions (called Exponentially Bounded Functions) enjoying interesting properties similar to
uniform metric. Some results concerning the exponentially meric are proved.

Keywords
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1- Preliminaries and definitions
Throughout this paper X and Y are metric spaces, the symbol (y;,y,)denotes the inner

product of two elements vy, and y, in the real Hilbert space ¢°.
Definition 1.1. For fixed real number r, fixed &e Xand arbitrary xe X, consider the

sequence x%) = &9 defined by,

M n=0,123

By using definition of norm |.|, in £* and the fact that (n-1)f >n! for n=4,56,..., a

simple calculation shows that 1< )x("i)

'2 < eXp( Lzz—(d(x,i))z}, hence, x% is a nonzero element of
e,

For fixed neY, the function f:X-—Y, is called Exponentially Bounded of rank r
relative to (¢,m), if there exists ye ¢* such that

d(f(x)m) < [r,x®) forall xeX.

We denote the set of all exponentially bounded functions of rank r relative to (¢,n), from
X to Y by EB,(En,X,Y).

For y={c, o, in ¢2, define |y|={ca|},- We know that |y|e ¢* If fe EB,(§n.X,Y), then for

0<r<s we have
df(hn)< '(7 X(")l <y x69)< (o}, x&9),

for all xe X . Hence, EB,(£,n.X,Y)c EB,(En,X.Y) if 0<r<s.
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