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These results indicate that the genetic
design procedure involved in (III) readily
produces robust controllers. Thus, it should
be noted that I, < I'', event though I > T ;
and I';, < I, even though [>T, ;in
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addition, '+ ', <" + M and I", + ", <
I, + I',. In this way, it is also interesting to
note that the genetic design procedure
provides effective controllers by observing
their performances in Fig. 8 (a), Fig. 9 (b),
and Figs. 10 (a & b), for which such optimal
design procedure has been applied individually.

4-Conclusion

In this paper, genetic algorithms have been
used in the design and robustification of
various monovariable and multivariable
fuzzy-logic controllers. In particular, it has
been shown that genetic algorithm provides
effective mean of designing the optimal set
of fuzzy rules as well as the optimal domains
of associated fuzzy sets simultaneously both
in monovariable model-based and in
multivariable non-model-based fuzzy-logic
controllers. Furthermore, it has been shown
that genetic algorithms are very effective in
robustification in order to cope with
uncertainties in the dynamical characteristics
of robotic manipulators.
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controller (C,) which has been only
genetically domain selected. In the case of
multivariable fuzy-logic controller in which
no information regarding the dynamical
parameters is used, the genetic design
procedure has been
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Figure (6) Workspace trajectory tracking
Genetically domain selected (without payload)
(a) Without payload (b) With payload.
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accomplished in three different ways in
order to show the case of designing robust
controllers:

(I) The controller is first genetically
designed so that the domains of the fuzzy sets
and the consequents of fuzzy rules are
optimally determined simultaecously when the
robotic manipulator carries no payload. The
resulting workspace trajectory-tracking
performances of the end-effector are present
d in Fig. 8 both without payload and with
payload. The associated cost function, I,
without payload and with payload, are readily
computed, respectively, I =144.x10* and
I =360.x10".

{(II) The controller is then genetically
designed so that the domains of the fuzzy sets
and the consequents of fuzzy rules are
optimally determined simultaneously when
the robotic manipulator carries a 4Kg payload.
The resulting workspace trajectory-tracking
performance of the end-effector are presented
in Fig.9 both with payload and without
payload. The associated cost function, T,
without payload and with payload, are readily
computed, respectively, I',=317.x10* and
" =236.x10".

(III) The controller is finally genetically
designed so that the domains of the fuzzy sets
and the consequents of fuzzy rules are
optimally determined simultaneously when
the robotic manipulator performs a composite
task consisting of the task in the absence of
any payload together with the task in the
presence of a 4Kg payload.

The resulting workspace trajectory-
tracking performances of the end-effector are
presented in Fig. 10 both without payload and
with payload. The associated cost function,
I, without payload and with payload are
readily computed, respectively, I, = 185.8 X
10 and I =259.7x10*.
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logic controller when the robotic manipulator
performs the specified task.

3-ILLUSTRATIVE EXAMPLE

These genetic methodologies can be
conveniently illustrated by designing
monovariable computed-torque/fuzzy-logic
and multivariable fuzzy-logic controllers for
a two-link direct-drive robotic manipulator
presented in Fig. 4. The governing dynamic
equations of this robotic manipulator is given
in detail in [4].

4

Y

vx

Figure (4) Schematic diagram of a

two-link robotic manipulator.

In the case of monovariable computed
torque/fuzzy-logic controller, these genetic
design procedure have been accomplished in
two different ways:

(I) The controller, C,, is first genetically
designed so that only the domains of the fuzzy
sets are optimally determined when the
robotic manipulator carries no payload. The
progressively improving behavior of the
genetically-domain-setected monovariable
computed-torque fuzzy-logic controller can
be observed in Fig.5.

Accordingly, the workspace trajectory
tracking performances of the end effector are
presented in Fig. 6 both without payload and
with payload. It must be noted that the
- robustness of such controller designed when
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subjected to no payload can be tested due to
structured dynamical uncertainties because of
an additional unknown payload. The
associated cost function, I', without payload
and with payload are readily computed,
respectively, I', =39.7x 10*and I',= 161. 0
x 10,

(IT) The controller, C,, is then genetically
designed so that the domains of the fuzzy sets
and the consequents of fuzzy rules are
optimally determined simultaneously when
the robtic manipulator carries no payload. of
the Accordingly, the workspace trajectory-
tracking performances end-effector are
presented in Fig. 7 both without payload and
with payload.
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Figure (5) (a) IAE of joint 1 (b) JAE
of joint (¢) sum of IAE of joints.

The associated cost functions, I, without
payload and with payload are readily
computed, respectively, I",=20.0x10* and
[,=45.0.x10* It is evident that I'' <I", and
[,<[,. This means that the controller (C,)
which has been genetically rule induced and
domain selected is superior both in
performance and robustness than those in
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of progressively increaing fitness, @, are
produced until no further significant
improvements is achievable. This genetic
design procedure provides the optimal set of
fuzzy rules as well as associated fuzzy
domains simultaneously. '

2-2 Multivariable fuzzy-logic controllers
In this case, in order to remove the need
for precise knowledge of dynamical

parameters incorporated in the dynamical

equation, the control law is.presented in the
form of

t=E(e, e) amn

expressed in terms of fuzzy-logic. In this
form, the multivariable fuzzy-logic controller
is governed by set of rules of the form

IFe; is P?’) and e, is P2’) and ... e, is

pi”

and e1 is Q(lk‘) and e1 is Q(zk’) and ... en is
&)

Qn

THEN 1, is R" and 1, is RS and ...
7, isR% (18)
The entire fuzzy setsine, ¢;, and T, spaces
are given in equation (14), in which je
{1,2,....p},k € {1.2,..,q},and Le {1,2,.....r}.
These entire fuzzy sets are symmetric and,
respectively, defined on the domains [-a.,
+o.], [-B, +B, . and [-y, +¥], (i=1,2,...,n). In
this case, the f yzzy partitioning and associated
triangular membership function of
antecedents and the consequents incorporated
in the generic rule (18) are assumed to be
symmetric in which, p=q=3 and r=7. It is
evident from the generic rule (18) that there
are (pq)" rules each with a different antecedent
for each of which the appropriate consequent
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must be determined in terms of entire fuzzy

sets R (i=1,2,...,n). It is also evident that there
are 3 different domains of fuzzy sets
incorporated in the antecedents and
consequents of the generic rule (18) for each
joint of the robotic manipulators which hence
indicates that there are 3n parameters
representing the domains of fuzzy sets for the
n-link robotic manipulator. The genetic design
procedure accordingly represents each fuzzy-
logic controller as an entire string of
[(pq)"+3n] concatenated substrings of binary
digits. The number of fuzzy linguistic values
of each fuzzy sets in the e, and ¢ ; spaces are
3 (i.e.N, Z, P). The binary representation of
the fuzzy consequents of rules is shown in
Fig (3). However, it is assumed that optimal
set of rules for each joint of the robotic
manipulators includes the followinng rule

IFe isZande, isZ
AND él is Z and éz isZ
THEN t, isZand 1, is Z. (19)

The fitness, @, of each entire string of
binary digits is readily evaluated using
equation (15). The evolutionary process
involved in the genetic design of these
multivariable fuzzy-logic controllers starts by
randomly generating an initial population of
binary strings each as a candidate solution.
Then, using the standard genetic operations
of roulette wheel selection, multi-point
crossover, and mutation [8], entire population
of binary strings are caused to evolve. In this
way, multivariable fuzzy-logic controllers of
progressively increasing fitness are produced
until no significant further improvement is
achievable. This genetic design procedure
thus provides the optimal multivarible fuzzy-
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NB NS Z PS PB

P, (i=1,2,...,n)
"(X, +a|
NB NS Z PS PB
Ql (i=l,2, ,n)
'Bi +Bi
NB NS Z PS PB
A pre—
R; (i=1,2,...,n)
-Yi +7Yi

Figure (2) Symmetric triangular

fuzzy membership functions:

The evolutionary process starts by
randomly generating an initial population of
binary strings each as a candidate solution.
Then, using the standard genetic operations
of roulette wheel selection, multi-point
crossover, and mutation [8], entire populations
of binary strings are caused to evolve. In this
way, computed-torque/fuzzy-logic controllers
of progressively increasing fithess, @, are
produced until no further significant
improveme nt is achievable. It is evident that
a controller with the largest fitness, Q .18
an optimal or near-optimal solution in the
sense of the smallest cost function, I' . This
genetic design procedure provides the optimal
domains of fuzzy-sets associated with some
prespecified set of fuzzy rules obtained
heuristically using control engineering
knowledge.

In case (II), the genetic design procedure
represents each fuzzy-logic controller
represented by equation (12) and (13) as a
string of (pqn + 3n) concatenated sub-strings
of binary digits. In each such entire string
the first (pqn) sub-strings represent (in
encoded) form the entire set of consequents
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of fuzzy rules, whilst the remaining 3n sub-
strings represent (in encoded form) the
symmetric domains of these rules. Thus, the
concatenated sub-strings of binary digits
involve both the consequents of rules and the
domains of fuzzy membership functions. The
number of fuzzy linguistic values of each
fuzzy sets in the e, and ; spaces is 5 (ie.,
NB, NS, Z, PS, PB) as it was in case (I). The
binary representation of the fuzzy
consequents of rules is shown in Fig 3.

However, it is assumed that optimal set of
rules for each joint of the robotic manipulators
includes the following rule:

IF e; is Z and e; is Z, THEN u; is Z. (16)

The fitness, @, of each entire string of

binary digits which represents a controller is
readily evaluated from equation (15) as
before.

Sign bits | Value bits § Numeric value | Fuzzy value
0 11| -3 NB
0 1 0 -2 NM
0 01 -1 NS
0,1 0 0 0 Z
1 0 1 +1 PS
1 1 0 +2 PM
1 1 1 +3 PB

Figure (3) The binary representation

of the fuzzy consequents of rules.

The evolutionary process involved in this
genetic design starts by randomly generating
an intial population of binary strings each as
a candidate solution. Then, using the standard
genetic operation of selection, multi-point
crossover, and mutation [8] entire population
of binary digits are caused to evolve. In this
way, computed-torque/fuzzy-logic controllers
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of fuzzy rules set and fuzzy domains set. This
representation can be achieved in different
ways; but the simplest form of these
controllers is governed by the decoupled
version

u =K (e, e (=123...0) (12)

of equation (10b) in which each of n joins is
controlled separately. Thus, each of the n
decoupled PD like fuzzy logic controllers is
presented by a rule of the following generic
form

Ee, is PP AND ei is Q¥ THEN u; is R{
(=12,.0) (13)

The entire sets of fuzzy setsin e, , ¢; and u,
spaces are, respectively

p,={p", P® ..., PP}

G=12,..n), (14a)
Qi ={Q", e ... 0¥}
G=12,..n), (14b)

G=12,..n). (14¢)

In this no*ation j € {1,2,...,p}, ke
{1,2,..,q},and .- {1,2,..,r}. This entire fuzzy
sets are ass: med symmetric and are,
respectively, defined on the domains [-o,
+o.], [-B, +B,], and [y, +v], (i=1,2,....n).

The genetic design approach for such
controllers presented in this paper is achieved
in two different ways:

(1) C,, a computed-torgue/PD-like fuzzy-
logic controller for which only the domains

Amirkabir/Vol.13/No. 52/Fail 2002

of the fuzzy sets are determined genetically.

(I1) C,, a computed-torgue/PD-like fuzzy-
logic controller for which the fuzzy ruler as
well as the domains of the fuzzy sets are
determined genetically.

In case (I), the genetic design procedure
represents each fuzzy-logic controller
represented by equations (12) and (13) as a
string of 3n concatenated sub strings of binary
digits, Each such sub-string represents the
individual domains of the entire symmetric
fuzzy sets P; Q, and R, (i=1,2,..,n) in binary
coded form. The fitness, ¢, of each entire
string of binary digits which represents a
controller is readilly evaluted in the form

o=Big-T (15)

where Big € R+ is an appropriately large
number and I is the cost function given by
equation (11). It must be noted that the set of
fuzzy-rules (of which the associated domains
of fuzy-sets are determined genetically) is
selected for each joint in accordance with the
set-point control knowledge, represented in
Fig. (1), [4]1[6]. Furthermore, the entire
symmetric fuzzy sets P, Q,, and R, which are,
respectively, defined on the domains [-ot, +0.],
[-B, +B], and [y, +v], (i=1,2,...,n) have
triangular membership functions of
antecedents and consequence incorporated in
the generic rule (13) and shown in Fig.2 when
p=q=r=5.

e NB | NS Z PS PB
NB NB | NB | NB | NS Z
NS NB | NS | NS Z PS

Z NB | NS Z PS PB
PS | NS Z PS PS PB
PB | Z PS PB PB PB

Figure (1) Set of fuzzy rules.
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of computed tprque/fuzzy logic controller is
described to improve such model based
controllers dynamical behaviour. In this
approach, a non linear PD like fuzzy logic
controller in introduced by a control law of
the form

u =K (e,e) (8)

in association with equation (6). The
effectiveness of genetic algorithm is
demonstrated in the optimally design of
domains of the fuzzy logic sets embodied in
such computed torque/PD like fuzzy logic
controllers. Moreover, it is shown that the
optimal fuzzy rules as well as the optimal
domains of the associated fuzzy sets can be
simultaneously determined using genetic
algorithms. The results clearly show that such
heuristic search methods significantly
automate the design procedure of such
controllers in an optimal sense. Secondly, in
order to remove the need for dynamical
parameter estimates in such model based
controllers, genetic algorithm are also

deployed to design optimal non model based

multivariable fuzzy logic controllers
governed by non linear control law of the form

1=E(e,é) )

expressed in terms of fuzzy logic. It is
dem;)nstrated that genetic algorithms are a
very effevtive means of determining the
optimal domains of fuzzy sets as well as
optimal set of fuzzy rules embodied in such
non linear multivariable non model based
fuzzy logic controllers. Furthermore, it is also
demonstrated that such fuzzy logic controllers
[11] can be readily robustified with respect
to structured uncertainties in the dynamical
characteristics of robotic manipulators.
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2-Genetic Design Procedure

Fristly, a new class of monovariable model
based fuzzy logic controller is introduced. The
genetic design approach is then presented for
two types of controllers, namely C, and C, .
Secondly, a multivariable non model based
fuzzy logic controller is genetically designed
for both set of fuzzy rules and set of fuzzy
domains. Then, the robustification procedure
of such controllers is also described using
genetic algorithms.

2.1-Monovariable computed Troque/PD
like fuzzy logic controllers

In this case, the control law is presented in
the form of

t=D(0X0d +u) + h(b, ) (10a)
where
u=Ke,e) (10b)

is the PD like fuzzy logic part of such
computedtorque/fuzzy logic controllers. In
equation (10), it is assumed that both D(0)
and h(e, ) are known precisely as dynamical
characteristics of particular robotic
manipulator. The performance of such
controllers depends on the design of the fuzzy
logic part as indicated by equation (10b).
Genetic algorithms are, however, used in
order to design optimally such that a cost
function of the form

T
r= | llello b

is minimized when the robotic manipulator
performs a specified trajectorytracking task
of duration, T. The problem is now to express

such fuzzy logic part function k(e, e )in terms
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demonstrated. The dynamical behaviour of
non red undant robotic manipulators
neglecting all elastic effects is governed by
non linear Nector matrix vector matrix
differential equations of the form

D@®©) 0 +v®0)+g@) +f=1 (1)

In equation (1), D(6) € R"*" is the inertial
matrix,v(®, 8) € R" is the vector of centrifugal
and coriolis torques, g(0) € R" is the vector
of gravitational torques, f € R"is the vector
of friction torques, T € R" is the vector of
actuator torques, and 8 € R"is the vector of
joint angles. If the dynamical characteristics
of such manipulators are known precisely, it
is then possible to introduce computed torque/
PD controller governed by the control law
equation of the form

t1=D(0) (04 +u)+h(8,0) )
where
u=Kje + K;é €))

In equation (2), 0, € R is the vector of desired
joint angles, e = 8, - 6 € R is the vector of
joint angle errors, K, € R™ is the
proportional gains matrix, K, € R™"is the
derivative gain matrix, and

h(6.6)=v(®, %) +g®) +fe R". 4)
It is then eviient from equation (1), (2) and
(3) that, the vector of joint angle errors is
governed by the linear vector matrix
differential equation of the form

;+kzé+k,e=o (5)

This indicates that, the controller gains
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matrices K, € ®™*and K, € R™"can be
readily chosen so as to produce linear second
order error dynamics with any required
characteristics. In this case, they are
frequently selected to be diagonal matrices,
for example, in order to have decoupled
dynamical behaviour. However, the
dynamical characteristics of robotic
manipulators are never known precisely. In
such cases, the computed torque/PD
controllers will not have the form of equation
(2) but rather the form

t=D@®X0d+u)+ h(,0) (6)

where 3(9)¢D(9)e K™ is the estimated
value  of inertial matrix  and
h(8,0)=h(0) e R" is the estimated value of
the centrifugal, coriolis, gravitational and
frictional vector. It is therefor evident from
equation (1), (2), (3), and (6) that the vector
of joint angle errors is not governed by
equation (5) but rather by equation

e +kye +kye=

D" ©[(1® 6)- 16, 8)} +(D@®- D®) 6].
G

Equation (7) clearly shows that diagonally
chosen gain matrices embodied inu e R will
not produce satisfactory error dynamics in
practice. This problem has already been
addressed in [9] in which genetic algorithms
have been deployed to identify the dynamical
characteristics. Besides, adaptive computed
torqve controllers have also been proposed
in [10] in order to circumvent the problem.
However, such adaptive controllers.in which
real time explicit identification scheme is
incorporated are too difficult for practical
industrial use. In this paper firstly, a new class
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Abstract

e B T T e VA S U —

In this paper, genetic algorithms are used in the design and robostification of various |
lmoel-based/non-model-based Juzzy-logic controllers for robotic manipulators. It is |
demonstrated that genetic algorithms provide effective means of designing the optimal set
I of fuzzy rules as well as the optimal domains of associated fuzzy sets in a new class of '

' model-based-fuzzy-logic controllers. Furthermore, it is shown that genetic algorithms are |
very effective in the optimal design and robustification of non-model-based multivariable
: Juzzy-logic controllers for robotic manipulators.

: Keywords

1-Introduction

In recent years, much research efforts have
been increasingly expended on the
development of high-performance trajectory-
tracking controllers for robotic manipulators.
In this way fuzzy-logic controllers which have
been successfully used in different field of
control engineering showed higher
performance and robustness, [1-2]. Howéver,
there are some inherent difficulties in the
design of such fuzzy-logic controllers
particularly in the field of robotic
manipulators in which the governing
dynamical equations are highly non-linear and
coupled so that complicated controllers have
therefore failed to replace the relatively simple
non-model-based and/or model-based PD
controllers frequently used in routine
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industrial applications, [3]. Besides, the need
for optimal design of such controllers in
fuzzy-logic terms of various predefined
objective functions suggests that an effective
approach was employed [4]. It was shown in
[5] and [6] that genetic algorithms [7-8]
provide a very effective means of optimally
solving various complex engineering
problems particularly in the field of control
engineering. Indeed, such hybridization of
fuzzy logic algorithms is currently gaining
much interest and attention as a powerful
means in the intelligent research activities.
The optimal design of such fuzzy logic
controllers in terms of domains of the
associated fuzzy sets and/or fuzzy rules
embodied in such controllers can be readily
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