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Figure (6) Steady state response for the flexible dam crest
displacements in the frequency domain.
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Figure (4) Hydrodynamic force (absolute value) on the upstream face
of the rigid dam due to the harmonic excitation of dam support
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reservoir cases and full reservoir cases. Static
displacement of the dam is obtained first.
Dynamic crest displacement relative to static
value of displacement is then added to it.

Discussions

As Figures 3, 4 and 6 show, the results
obtained from the present method have good
‘agreement with the results of other
researchers. But in frequency range between
the first and second natural frequencies of
reservoir, some errors occur in the results (not
greater than 10~25%) because of approximate
Sommerfield radiation boundary condition
[12]. So it is well supposed that by using a
more exact boundary condition, we can obtain
completely proper results from the present
method.

A special case

As for the results of this research (not
shown here), in a 2D circular reservoir with a
rigid structure, the system matrices will be
necessarily symmetric. So in this particular
case, we can solve the system of equations
easily by simple methods and a limited
memory space.

Conclusions
This paper presents an efficient method for

2D dynamic interaction analysis of gravity

dam-reservoir systems, using Euler-

Lagrangian approach, based on BEM-FEM

formulation, in the frequency domain. The

results obtained from the present research are
as follows:

- It is evident that the present derived
formulation for the dam-reservoir dynamic
interaction analysis, is a proper and
successful formulation in Euler-
Lagrangian approach. However unlike the
FEM-FEM formulation for the velocity

Amirkabir/Vol. 13/No. 50/ Spring2002

potential field in the reservoir, symmetry
does not in general exist for the fluid -
structure system. Only in a special case of
circular reservoir, if the surrounding
structure is rigid, symmetry is obtained in
the fluid domain.

2- The weighing function in the BEM is the
fundamental solution, whereas the
weighing function in the FEM is the shape
function of the trial function. So, the
important result of this investigation is that
considering basic difference between
weighing functions used in BEM and
FEM, in general, the governing equations
set are nonsymmetrical equations and for
obtaining symmetric equations,
comprehensive research and techniques
are required.

3- Considering the smaller input data and
problem dimension and also for increasing
the speed and exactness of analysis in
BEM, the propsed method is much more
versatile than FEM in the frequency
domain.

4- To extend the work to time-domain
analysis, standard Fourier synthesis, could
be used in a straight forward manner.

5- Extension of the work using Hankel
fundamental solutions would enhance the

accuracy of the radiation boundaries.
S4

Sa S

[

—

82
Ly Ll 1
B A A S
Figure (1) The general model of the

dam-reservoir system.
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G] ,G2 and G , are submatrices of G, related
to S, S, and S, boundary conditions,
respectively, D is a matrix for dam effects on
the reservoir [1].

Equations (6) are the governing equations
set for the dam structure in the time domain.
In the frequncy domain, the displacements
and forces are as follows:

a=ae® (14a)
F =Fe (14b)
So, substituting equations (14) in equations
(6), the following equations set is obtained

as the governing equations set for dam
structure in the frequency domain:

Asa+pficoQ.q):Feq' (15)
in which,

A =- M, o’ +C, i+ K (15a)
Feo=-M,r (15b)

Combining equations (13) and (15), we
obtain the governing equations set of the
coupled dam-reservoir system based on
BEM-FEM in the frequency domain:

Ay pioQ |Ta ] |F,,
prawD HOH(p]”[OqJ (16)

By solving the above equations set, the
dam-reservoir interaction can be analyzed.

Numerical Results

Two test examples are examined to verify
the presented formulation.

Exzimple 1. Hydrodynamic Pressure on a
rigid dam

Hydrodynamic pressure in the vertical
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upstream face of a rigid dam has been
computed. The geometry of boundary element
model of the reservoir is shown in Figure 2.
However the boundary conditions and other
assumptions for the fluid domain remain the
same as expressed in the past sections. The
acoustic velocity ¢ and the water mass
density ,p, are 1440 m/s and 1000 kg/m’,
respectively. Figure 3 shows the
hydrodynamic pressure distribution on the
upstream face of rigid dam for two different
values of o (see Equation 2a). In this Figure,
(1)/03]=1.2, in which ®, is the fundamental
frequency of reservoir. This value being
between the first and the second natural
frequencies of the reservoir, is usually more
demanding for accuracy [12]. As seen in
Figure 3, the accuracy is quite good. Figure 4
shows the hydrodynamic forces on the
upstream face of rigid dam for a range of
frequencies ®/w,=0~6. In this figure, two
different values of o have been considered.

Example 2. Response of a flexible dam-
resevolr system

For evaluating abilities of the presented
method for the dam-reservoir interaction
analysis, a deformable dam analyzed by Tsai
et al. [13] has been selected. Figure 5 shows
BEM-FEM model of this dam (66 constant
boundary elements and 96 four-node
isoparametric finite élements). In this
analysis, steady state response for dam crest
displacements in the frequency domain has
been shown in Figure 6.

For the concrete deformable dam material,
it is assumed that, the elasticity modulus
E=3.5x10" N/m?2, Poisson ratio v=0.2,
concrete mass density p =2450kg/m’® and
damping coefficient £=5% of critical
damping. For evaluating the resevoir effects
on dynamic response of the dam, analysis is
performed for two cases, namely the empty
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the Elliptic boundary value problems (such
as static and steady-state problems).
Nevertheless, for Hyperbolic boundary value
problems (such as transient problems), the
solution in each time step is dependent to
the all previous values of the solution in the
past time-history. So, the inherent reduction
of space dimension is neutralized by an extra
time dimension. In other words, it seems that
.BEM, when applied to modeling of infinite
and semi-infinite domains, has no preference
ability for dam-reservoir systems analysis in
the time-domain due to complexities of the
convolution integral and singularity of the
kernels [2 and 4].

However considering the above diffculties
first, BEM in the frequency-domain is used
as a numerical method for the reservoir field
and then it cculd be employed for the time -
domain solutions through the Fourier
synthesis.

The governing equation of the reservoir
field is equation (7). In the frequency domain,
velocity potential and displacement vary by
time as follows:

PP (102)
= e (10b)

where i is the imaginary number /_1 and
o is the loading frequency. Substituting
equation (10) in equation (7), we have:

2 2
(-5;—2—+—a%—2—)<p+k2<p=0 (11)

where k(=w/c) is the wave number.

In BEM similar to FEM for numerical
solving of equation (11), the weighted
residual method is used. Then by using the
weighted residual method, Green Lemma and
using a special weighing function, the
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fundamental solution, an important boundary
integral equation is obtained. It is approved
that Bessel functions (as the fundamental
solution) can be used for wave propagation
problems in finite domains. For infinite
domains, the Bessel functions have not a good
behavior because of reflected wave terms from
infinity and thus Hankel functions must be
used as the fundamental solution. However,
since in this research, the reservoir far field
has been modeled by a proper boundary
condition (Sommerfeld boundary condition),
the Bessel functions have been adopted as the
fundamental solutions [6]. On the other hand,
the fundamental solutions in 3D problems
have logarithmic forms whose calculation by
numerical integration is much simpler than
that of 2D problems where the Bessel/Hankel
functions govern. Therefore, extension of the
problem to 3D is very easy. By discretizing
the reservoir boundaries by boundary
elements, the following basic equations set is
derived:

He=Gq (12)

H and G are coefficient matrices; @ is the
vector of velocity potential nodal values; q
the nodal vector of velocity potential normal
derivatives.

After inserting the boundary conditions
(equations 1 to 4) to equation (12), the
following discrete set of equations is derived
as the governing equations set for the reservoir
field in the frequency domain:

Hyo+priwDa=0 (13)
in which,
. . 2
Ho=-p; (H+12 G, + 12 G, + 2-G,
c Be g
(13a)
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and the hydrodynamic force vector due to
fluid - structure interaction is

FI:“pt“ N{ nN;ds —(;=°PfQ_(J; (6b)
S3

M, C and K, are the mass, damping and
stiffness matrices of the dam respectively; 7,
j and ; are nodal displacement, velocity
and acceleration of the dam, respectively; N,
and N, are the structure and fluid shape
function matrices, respectively; p, is the fluid
mass density; ris the rigid body displacement
vector of the structure; ; . (t) is the ground
acceleration; n is the unit vector normal to
the dam upstream face; |, is the nodal
velocity potential of the fluid domain and Q
is the fluid- structure interaction matrix.

The governing equation of the resrevoir
field is the well-known Helmholtz equation
as follows:

Vi -2 =0 (7
C

Similar to the structure field, using FEM
based on the weighted residual method, the
following discrete set of equations is derived
as the governing equation set for the reservoir
domain:

M{_(; +Cf .(; +Kf -(;:F‘I (8)

in which,

M, =L N"{prdeJr_l-, N p; Nyd's
c” g S

o4
Vi

(The mass matrix of reservoir)(8a)
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prfodH.B.‘__[ NT peNids
Sy

I
Cp=—
C2 C

S

(The damping matrix of resrvoir)(8b)
Kle VI N pr VN;dV
A

(The stiffness matrix of reservoir)(8c)

F'1='PfJ N;r“TNst ;=‘PfQT ;
s3

(The fluid-structure interaction effects)(8d)

Combining equations (6) and (8), we
obtain the governing equations set of coupled
dam-reservoir systems as follows:

M, O
0 M,

S fim i

9)

The above equations system is a symmetric
equations set.

BEM-FEM Formulation

Recent progresses in the BEM show that
due to the low amount of effort needed for
discretization and solution, this method is an
efficient method for analysis. In dam-
reservoir interaction analysis, hydrodynamic
pressure distribution on the upstream face of
dam is important for the dam designer though
its distribution in other parts of the reservoir
has no direct significance. As BEM is related
only to the boundaries of the reservoir, this
method reduces both problem dimensions and
input data, and therefore could increase the
speed and precision of the solution.

BEM is a perfectly successful method for
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Basic Assumptions

1- The problem is 2D.

2- Only horizontal earthquake is exerted to

the dam base.

3- Reservoir water is compressible,

nonviscous (invicid) and irrotational.

4- The dam material is isotropic and linear-

elastic.

5- Free surface linear waves are considered.

6- Dam-foundation interaction is neglected.

7- Dam-reservoir interaction is considered.

8- Mass density of water is constant.

9- Amplitude of displacements is small.

10- For radiation (transmitting) boundary, the
Sommerfeld boundary condition is
adopted.

11- Refraction boundary condition is
considered for partial energy absorption
of reservict bottom.

12- The veloctiy potential is considered as the
reservoir variable.

Boundary Conditions
According to the above assumptions (also
see Figure1), the boundary conditions for the
reservoir field are as follows:
a) Radiation (truncation/transmitting/
transparent) boundary condition (S,

boundary):
X R 1
an c i n

b) Refraction boundary condition for reservoir
bottom (S, boundary):

o _ 1 g 2
- . @ (2)

B=l+0t (23)
1 —-a

c¢) Interaction boundary condition (S,
boundary):

Amirkabir/Vol. 13/No. 50/ Spring2002
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d) Free surface boundary condition (S,
boundary):
90 _ 15 4)
n g
where :5 is the velocity potential, c is the
water pressure waves velocity, P is the
relative acoustic impedance of reservoir
bottom, n is the unit vector normal to the
reservoir boundaries,j . is the normal
velocity of dam upstream face, g is the gravity
acceleration and o the reservoir bottom

reflection coefficient.

FEM-FEM Formulation

The governing equations set for the
structure is the well-known equilibrium
equations as follows:

Gij,j + bi = 0 (5)

where o, are the components of the stress
tensor and b, are the body forces.

In FEM, for solving a differential equation
with known boundary conditions, an
approximate method (such as the weighted
residual method )is used. Based on this
approximate method and by using the Green
Lemma, the following discrete set of
equations is derived as the governing
equations set for the structure:

M, a +C, a +K,a=Fg +F (6)

in which the inertia force vector due to
earthquake is

Fo=-Mr T{g_ ® (62)
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An efficient method for two-dimensional dynamic interaction analysis of gravity dam-

reservoir systems is presented. The Euler-Lagrangian approach, based on BEM-FEM

Jormulation in the frequency domain, is adopted. Displacement-based finite elements for the

structure and velocity potential-based boundary elements for the fluid domain are developed.

Compressibility of the fluid is considered. In this formulation, symmetry of the equations

system could only be achieved once the fluid domain is circular and interaction absent. The

results show that this method can be offered as an appropriate method for dam-reservoir |
| interaction analysis and indeed extendable to time-domain analysis.

{ Keywords

I

|

|

| Boundary Element Method, Finite Element Method, and Fluid-Structure Interaction. |
J

Introduction

Research on linear dynamic response of
dam-reservoir systems, has made progress
toward a completeness stage. The analytical
methods are applicable only to simple
geometry and boundary conditions, and in
practical cases with irregular or complicated
conditions, it is necessary to apply numerical
methods such as finite element methods
(FEM) and boundary element methods
(BEM). For the fluid, two different
approaches have been used by different
researchers [2]; i.e., the displacement
formulation (Lagrangian approach) and the
velocity potential/pressure formulation
(Eulerian approach). Due to its less degrees
of freedom, the Eulerian approach has been
employed for the fluid domain. For modeling
of the structure domain, the Lagrangian
approach has been adopted. In the Eulerian

86

FE formulation of the fluid, pressure field
would lead to nonsymmetrical interaction
system [10]. L. G. Olson and K. J. Bathe [7]
presented a method for obtaining a symmetric
set of equations based on FEM for both fluid
and structure domains (FEM-FEM). They
used the velocity potential and hydrostatic
pressure as the fluid variables and
displacement as the structure variable. In this
research, the above idea has been elaborated
for obtaining a symmetric set of equations
based on FEM for both reservoir water and
dam structure (FEM-FEM) using velocity
potential for the fluid and displacement for
the dam. Furthermore the same approach is
adopted for the FEM-BEM formulation to
explore the possibility and conditions of
achieving symmetry[9].
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