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The duration of pulse is chosen as At =
A/[EA1-v?)]” and ruled by A. Fig. (2) il-
lustrates the results for two different values
of A. It can be seen that as the pulse dura-
tion decreases, the critical value of K in-
creases. Figs (3) and (4) illustrate the influ-
ence of initial imperfections on the
buckling state for A = 2.5 and A = 4, re-
spectively. The initial imperfections of the
shell are chosen to be:

= 20X cog 216
wo=ag.h.cos . cos o (44)

where, according to reference [15], the
following form can be adopted for a,:

_ U 415,15
ap = ;‘2——1"15- Ix" g (45)
where, |, and 1, are the axial and circum-
ferential half - wave lengths. Experimental
results show that the most amplified mode
is an axisymmetric mode with [6]:

L= 1V2ly Io = 3y (46)

and

lo=n VR /[12(1 - v
(47)

is the axisymmetric classical static buck-
ling half-wavelength. In Figs (3) and (4),
the initial deviations are presented by the
unevenness factor UR/h, which is a dimen-
sionless parameter. The influence of the ini-
tial imperfections in decreasing the buck-
ling load is readily observed. In Fig. (5),
effect of shell length, radius and thickness
on the buckling load are investigated simul-
taneously. For this purpose two curves, one
represents a shallow shell with (/R = 2)
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and the other represents a medium length
(or relatively long) shell with (/R = 20) are
illustrated. In this figure, dynamic buckling
load ratio Pcr/Pcr (I/R = 2, R/h = 100) is
plotted against the dimensionless ratio R/h,
forA = 4.
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dynamic buckling stress ratio forA = 2.5.
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11-The increments of displacements and
strains are added to the displacements
and strains of the end of the preceding
time interval to obtain their values at
the end of the present time interval.

12-Based on the effective strains obtained,
‘the effective stresses are determined
from eqn (33).

13-The foregoing results are substituted in
eqn (29) to yield the increments of
stress resultants. Adding these incre-
ments to the values obtained in the pre-
ceding time interval, gives their values
at the end of the present time interval.

14-The above procedure is continued until
the final time of the loading is reached.

Buckling Criterion

The generalized concept of dynamic
buckling proposed by Budiansky [2] is used
in this paper. This concept is associated
with the dynamic buckling of a structure
where small changes in the magnitude of
loading lead to large changes in the struc-
ture response. For this purpose, the re-
sponse of the shell to impact loads of vari-
ous amplitudes is studied. Since the
response of the shell, subjected to an impact
load of amplitude K, depends both on time
and space, it is necessary to characterize
this response by a specific value. To this
end, using the solution procedure presented
in the previous section, the extremum value
of w at each time increment (lw,,) is deter-
mined. Then, among the results obtained
for lw,,/ in the loading time duration, the
maximum value is specified (may, .o lof). In
this way , the maximum value of lwl during
application of loading is determined. Based
on these results, the dimensionless ratio
(max ., Iwl) /h is plotted versus K/P,,, that
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is another dimensionless ratio. Here, K 1is
the amplitude of the applied load and P, 1s
the classical static buckling load. According
to the buckling criterion stated above,
abrupt reduction in slope of the mentioned
curve (minimum slope) indicates a dynamic
buckling state.

Results and Discussions

The presented analysis is applied to in-
vestigate the dynamic response of a simply
supported cylindrical shell whose geometri-
cal specifications are:
L/R=2

R/h =100  h=3[mm] (40)

The material properties are considered to be:

E=2x 10° [MPa] v =03
mo = 4 oo=131479x 1072

Gyp = 250 [MPa]
p = 7830 [kg/m’]
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The step load represents the worst type
of load - time function. For this reason , the
dynamic stability of the shell is investigated
for the step loading. To have a continuous
increased load, the starting and ending re-
gions of the load-time curve must be very
steep lines. Also, to improve the accuracy,
the time duration of load is divided into a
large number of load steps. For this special
case, the classical static buckling stress can
be determined from the following equation
[21]:

tof—

= Es hy (BT
Oy = i (1)L (F) 4
" {31-vp R B (
so that:

K :GDynAz G Dyn.

P. O st E. h ETL

ser s () (ED2 (43)

Y3(-vy R Es
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, 2, .... This is accomplished by employing
simultaneously the finite difference method
with respect to spatial coordinates x and 6 ,
and the fourth order Runge- Kutta method
with respect to time. The results are the cal-
culated increment values at the end of each
time interval. To employ the finite differ-
ence method, the shell must be discretized
by introducing a grid of nodes in the axial
and circumferential directions. To insure
stability of the results, the distances be-
tween nodes must be very small compared
with the axial and tangential buckling wave
lengths. This can be checked after the re-
sults for w and its variations in the axial and
circumferential directions are determined.
The initial and boundary conditions neces-
sary to accomplish the numerical solution of
eqn (23) are as follows: Initial conditions:

SUi=0 (0<x<1,0s6<2m 26
Ul (ti 1 <t<t)=U (i <t<tisn) (36)

where

Ur=u Uz =v Us=w (37)

The governing boundary conditions for
simply supported edges are:
M){ = 6Mx :0

0<x<l, <<t

U =80 =0 SN =- N () -N (1)

Ne=-N () a8)

in which, N is the external axial load. For
clamped edges we have:

0Ny =- IN©-N (1]
(39)

§U; =803 4 =0 Ny=-N@)

Therefore, the solution algorithm can be
summarized in the following steps:
1- The distances between the nodes in the ax-
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ial and tangential directions are chosen.
2-The initial imperfections distribution is
specified.

3-Time duration of loading is divided into a
number of loading steps.

4-The external load distribution is defined. In
general, the loading may be asymmetric.

5-After application of the load increment ,
the strain and rotation expressions are
calculated from eqns (7) and (35), us-
ing the finite difference method with
respect to x and 6. Then, using eqn
(30), the effective strain increment is
determined.

6-E; and E, modulii corresponding to
present effective stress are found from
eqn (34) and substituted in eqns (21)
and (29).

7-After the foregoing evaluations have been
accomplished, the remaining terms of
eqn (23) are substituted by finite differ-
ence expressions. In this case, all terms
are determined for the beginning of the
present time interval.

8-The above substitutions, reduce eqn (23)
to three second order ordinary differen-
tial equation accompanied by the initial
and boundary equations [eqns (36),
(37) and (38)] that must be solved by
the fourth order Runge-Kutta method to
obtain the increment values at the end
of the time interval.

9-If necessary , to obtain higher accuracy,
the preceding steps can be repeated
from step (6) until the successive re-
sults of the same time interval are suffi-
ciently close.

10-After the displacement increments are
determined, effective strain increments
as well as strain components are calcu-
lated from eqns (7), (35) and (30).
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Ny (Br-Ey). 8e .

0Ny = _EBh S'Yxem + 1
2(1 +vy) €e

2(1+vp)

3
—Ed (61cx+vp61<e)+& Er.p . e
12(]—V%) €¢ Es

M =

3
Mo=—Ed(3cq+v bey+ Mo ET s,

12(1-vs4) €e E;
3
M= — B Seor— L My (Br-Ey). ¢
12(1+Vp) 2(L+vy) €
(29)

The effective strain increment, dee, can
be calculated from the following relation:

Se e=%[(56 O+ (e g)? - (Be . Be o) + 3 (By xe)z]%
K (30)

Determination of Ey and Eg Mod-
ulii

The total strain can be considered to be
the sum of elastic, plastic and creep strains.
If the time duration of the loading is short,
the creep strain may be neglected and thus:

€=€g +€p (31)

The following state equation may be con-
sidered because of its simplicity and good
accuracy (specially for steels):

c =1 [c+ap(c-0 yp)m0 ] (32)

rr

where, o, and m, are material constants and
o,, is the yield stress. This equation can be
extended to two and three dimensional state
of stress, in the following form :

ee:-é-[ce+om<ce-cyp>m°1=H<oe> (33)

The function €, = H (o,) can be deter-
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mined from the uniaxial stress-strain dia-
gram of the material, conveniently. From
eqns (25) and (33), the E; and E, modulii
are readily found to be:

Er= E
[T+co.mop(Ce-Cyp)

mo—I]

Es= E
[1+00(0e-0p)™/0e] (34)

Effect of Initial Imperfections

Examination of the strain- displacement
equations (7) shows that only the x and 8
expressions are changed in this case. The
new rotation expressions are:

Bx=(w+ wo)x

Be:u+(w+wo),e (35)
R

As the moment resultants are dependent on
the curvature variations only, they are not
affected by the initial geometrical imperfec-
tions. On the other hand, the right sides of
the equations of motion include the dis-
placement derivatives with respect to time.
Thus, w, will not appear in these terms. The
work of external pressure also depends on
the value of w and not w,. So that the gen-
eral form of eqn (23) is valid in this case,
too, provided that the values of g and M ex-
pressions are changed corresponding to
eqns (35) and (7).

Solution Algorithm

Substituting eqns (7) and (35) into eqgns
(30), (29) and (25), three nonlinear partial
differential equations in terms of displace-
ment increments and time are obtained.
These equations are solved successively for
each time incerement (t <t<t,),i=0,1
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the displacement components, u, v, and W
will change and the new displacement com-
ponents become:

U=u+du
V=v+0v
W=w+ 8w (22)

due to these changes in displacements, the
stress and moment resultants will also
change, so that the governing equations
(16) will have the following form:

R . (Nx + 8Ny) x + (Nxe + 8Nyg) 6 = Rph (u + 8u) «

R . (Nxo + 8Nxg) x + (N + 3Ne) o + i— (Mg + 8Ma) 0

+ (Mg + OMye) x - No + 6N9)<B9 + SBS)‘ Ny + ONxg) Bx + 5Bx)
-p v+ V) - (w+ dw) g] =Rph (L +8V) «

R . (M + 8My) xx + 2(Mxe + My0) xo + *}%(Me + 0Mao) 08

-(Ng + SNB)* {R- (NX + 5Nx) (Bx + SBX) x+ (Nxs + SNXG)

[R . (Bo + 8Bo) x+ (Bx + 8Px) .01+ (Ne+ 3No) . (Bo + o) o}

-P R[(VL + V) g + (W + 8w)] = Rph (W + 6w)
(23)

eqn (23) is applicable to cylindrical shells
under compression or external pressure or
combination of these loadings, regardless of
the shell length.

Establishment of the Stress-

Strain Equations

The incremental changes in stress com-
ponents due to incremental changes in load-
ing, are found from eqn (19) and are:

80« = By (8€X+vp6€e)+~6—&~(ex+vp69)
1-v§ 1-V§
dop = Es (669+vp65x)+-§}3-i2~(ee+vpex)

T-vy 1-vy
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STXGIGS-S'YXG‘I‘SGS-YXQ (24)

Assume that the uniaxial tensile stress -
strain curve can be extended to two and
three dimensional states of stress by means
of the effective stress and strain concepts.
According to the definition, the secant and
tangent modulii are related to the effective
stresses and strains as follows:

Es:Ge/Ee

Thus, from eqn (25), it is easily seen that:

5]5535(9:2)—5% _G%_aee:(isg.g,_@‘_g)‘f’iz

€e €e €. dee € €
(26)
0r7
SE,= (E1-E,.%e Q7):
Ee

and eqn (24) can be rewritten as:

S0 =—Es (Sey+Vpdeg)+-2%(Br-Ey. dee
1-v§ Es€e

5cg= Es Beg+Vvyde )+ O (Et-Ey). dee

]"sz E«\'Ee
Oy = Ey .5Yx6‘+‘ 1 YXG(ET"ES)' %
2(1+vyp) 2(1+vp €e
(28)

Substitution of the above equations into eqn
(20), gives:

ON = Eh (BExm‘*‘VpSEem)*’&(E’l”1)'66"'
l“sz ee ES

SN =B (5con+v,0e )+ NeEL_1) 8e.
]_sz [SIFS Es
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curvature expressions from eqn (7) and em-
ploying Euler equations and eqn (9), the
governing equations become:

R.Nx,x+Nxe,e=Rphu,“

R Nyg,x +Ne,e+é'Me,e+Mxe,x< (No B +Nxa - p (v - wg)=Rphu

Rva ‘xx"‘ZMxB,xS +él\/{e,eé"Ne'[R-Nx-Bx,x

+ N (R o x +Pro)+No.Bool-p R-p(vs+wkRphw
(16)

These are the equilibrium equations of a
cylindrical shell under the action of external
fluid pressure. In the case of dead-loading
external pressure, the term - p (vy - ®) I8
omitted from the third of egns (16) and the
term - p (v - wg) 1s omitted from the second
equation.

Stress-Strain Relations

According to secant modulus theory, be-
yond the elastic region, the elasticity modu-
lus E can be replaced by the secant modulus
E.. Therefore, the modified Hook’s rela-
tions can be generalized to the plastic state,
as [21]:

eX:J—(cx-vpce)+ocT

€e=—1—(ce-vp0x)+ocT

_21+vyp) o

G E a7

in which , v, is the plastic Poisson ratio
[21]:

v],=0.5-%(0.5—v) (18)

Therefore, from eqn (17), we obtain:

Amirkabir/Vol. 11/ No. 42

Gx=—55 (e +vpep) - Bs- 0T
1-vg I-vyp

Ge=—Es (eg+vpe - Es0T
1-v¢ 1-vyp

E;

T xf = e Y

? 2(1+VP)Y ° (19)
The stress and moment resultants, based

on the first order shell theory, are given by:

b2
Ny =J Gy .dz
By}

Mij=j Cij.z.dz (20)
2

thus, after substituting eqns (19) and (6)
into eqn (20) and assuming that there is no
temperature gradient in the shell, the result-
ing equations will be:

N, = Esh
1-vg

(e xm+Vp€ m)

Nezwgi%-(e om + Vp € xm)

1-vy
Nxo = Esh X
2 (1 +vp)
3
My = Esh (Kx+VpKe)
12(-v?%)
Moo= Esh (Keg+VpKx)
12(1-v%)
3
M= Bsh o
121 +vy)

The Basic Equations

The general governing equations were
presented in eqn (16). Now, the applied
loads at time t, are incermented. As a result,
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Bx=w,x

V+Wpe

Bo= (8)

The forces and moments per unit length
of the shell in normal and shear directions
are related to the stress components through
the following relations:

Nx=C (€ xm+ VE om)
Mx=D (xx+VKke)
NS:C(G 6m + VE xm)

Me=D (Ko + VKy)

NXS:LZ_.\L C ¥ x8m)
2
Mx=(1-v)Dxxs (9)

where:

Cc=_Eh
1-v2

D=__ EW

12(1-v?
Substituting eqns (6) and (9) into eqn (5)
and dividing the strain energy into mem-
brane energy U,, and bending energy U,
gives:

U=Up+ Uy

where:

m:%“(e 2t € Bn+ 2VE ym € pm + 1‘2\’ Y %om)dx . dB

Ub:_RZDH(K%mhzvmm +2(1-v)xZe)dx.do
(10)
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The potential energy due to external pres-
sure can be written as:

Q:R”p.wdxde (11)

If the external pressure is provided by
means of external fluid, 9 different expres-
sions will be obtained [20]:

Q—.—pRjj[w+L(n2-u.w,e+u,e.w+w2)]dx o
R (12)

The kinetic energy of the shell, neglecting
the rotary inertia terms due to the thin shell
assumption, has the form:

Tzé. ”pRh(u%mLUz,t+w2,;)dxd6 (13)

Thus, the Lagrangian function of the shell
is defined as:

t2p2m el
I=J J J L(x,6,u,ux,u6 U,0,0,y,08, 0,
3 O 0

LW, Wy, We, Wxx , Wxe , Wee ,Wwy) dx . dB . dt

(14)
or in the expanded form, is:

t2(m gl
I:-{ j { RE €2 +€ % + 2VE 1€ o +1L 7 26
tydolo 2 5

+RD [e2 413+ 2viesx g+2(-v)xke]
2
+R-p[w+—1—~(02—u.w,e+n,g W+ wh]
2R
—%pRh (W2 + 2 + w2} dx.do.dt (15)

According to Hamilton’s principle, and
upon application of the Euler equations, the
stationary value of the functional appeared
in eqn (14) leads to the equations of motion
of shell. Thus, after substituting strain and
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Hamilton’s Principle - Nonlinear
Equilibrium Equations

Hamilton’s principle for the conservative
systems (neglecting the internal dissipation
of energy), can be written in the following
form:

51=J:2 SL.dt=0 (1)

1

The Lagrangian function L can be ex-
pressed in terms of the total potential ener-
gy V and the total kinetic energy of the sys-
tem T as follows:

L=T-V (2)

The total potential energy of the system is
the sum of strain energy U and potential en-
ergy due to external loads , so that:

V=U+Q 3)

The strain energy of an elastic shell whose
geometric parameters are shown in Fig. (1)
can be written as:

U:é_m (Gy€x+0pEp+TyoYxd+ TozYortTaa¥rdR. dudbdz
4)

and assuming plane -stress state for thin
shells, leads to:
U=L[[[ Gxex+opep+toreR dx dods

®)

=1
2

Using Love’s assumptions, the strain-
displacement relations can be expressed as:

€Ex=€&€ xm-Z.Kx

Ep=Egm-2.Ksg
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'Yx9='Yx9m'2Z~Kx6 (6)

where k is curvature of the middle surface
and the subscript m refers to the strains on
the middle surface of the shell. According
to Sander’s assumptions [19], the general
strain -displacement relations can be sim-
plified to give the following terms for the
strains on the middle surface and the curva-
tures in terms of the displacements:

Figure (1) Coordinate axes and
displacement components used
in the present formulations.

€ xm:U,x"f'l(W,x)z:U,x'f'—Lﬁzx
: 2 2
€ om= (0,0 -W)+~1—2(U rwel=Le-w+Llph
R R R 2
)

Yaom=(ug +0 0+ 1w +we)=dug+v,)+Babo
R R R

Kx = W,xx=Bx,x

Ke::_l——z— (U,e-{-w,ee):m
R R
Kxe=§1§(u,x+2w,ex)=%ﬁe.x (7)

where B is the rotation of the cross section:
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euation to determine the boundaries of both
principal and combination parametric reso-
nances for shell structures subjected to peri-
odic excitation [9].

The foregoing studies were based on the
analytical approach. In parallel, numerical
methods were also employed. For example
Gilat et al. [10], used the finite difference
method with respect to the axial coordinate
and the Runge-Kutta method with respect
to time. Liaw and Yang [11, 12] used a
doubly curved quadrilateral imperfect thin
shell finite element in their analysis and in
reference [13] the finite element method in
connection with Liapanov’s definition of
stability is used. Simitses [14] summarized
the concepts and methodologies used in es-
timating critical conditions for dynamic
buckling of suddenly loaded structures and
classified them in groups.

The often used equations of motion of
cylindrical shells, are generally based on
the works of Donnell [15] . In deriving
these equations, it is comonly assumed that:
the shell is short, no difference between the
works done by dead loading external pres-
sure and external fluid pressure is distin-
guished, terms containing product of rota-
tions and shear forces in the moment
equations are negligible compared to the re-
maining terms and some of the in - plane
inertia forces and the rotary inertia can be
ignored. Furthermore, in many researches it
is assumed that the buckling occurs in axi-
symmetric manner. Therefore , using the
above assumptions, the Donnell equations
of motion are further simplified.

In the present paper, the general nonline-
ar equations of motion of a thin cylindrical
shell subjected to axial compression or ex-
ternal pressure (deloading external pressure
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or fluid pressure) or combined loading are
derived by application of Hamilton’s princi-
ple. The simplifications commonly used in
stability analysis of cylindrical shells are
disregarded in this study. The presented
equations are valid for large deflections and
moderate strains, so that the analysis can be
applied slightly beyond the buckling state.
Elasto-plastic analysis is usually accom-
plished by incremental methods. The pro-
posed method is initialized by establishe-
ment of the state equation. To this end, a
state equation with a good accuracy is intro-
duced. The procedure of analysis is based
on previous works of the authors [16 , 17,
18]. According to the established state
equation, the stress and moment resultants
are determined and substituted into the per-
turbed shell equations. These equations are
then modified to take into account the influ-

-ence of the initial deviations.

The solution to the problem is obtained
progressively by employing the finite dif-
ference method with respect to the circum-
ferential and longitudinal coordinates and
the fourth order Runge-Kutta method with
respect to time.For determination of the dy-
namic buckling state, the buckling criterion
established by Budiansky [2] , is adopted.

In addition to the accuracy of the basic
equations, the present method is rapidly
convergent. The results of the present paper
are more accurate compared to the de-
scribed references. The advantage and gen-
erality of the present method is easily no-
ticed when the nonlinearity of the equations
of motion, nonlinearity of the material
properties , nonlinearity of the strain-
displacement equations and the possibility
of asymmetric or local buckling are consid-
ered.
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Introduction

It is of both theoretical interest and prac-
tical importance to investigate the stability
behavior of circular cylindrical shells sub-
jected to dynamic loads. Shells under time
dependent loading may be exposed to dif-
ferent kinds of dynamic instabilities, such
as parametric resonance or dynamic buck-
ling. The present study is restricted to dy-
namic buckling phenomena. The stability
behavior of thin shells is usually very sensi-
tive to the initial imperfections that are of-
ten induced due to the difficulty in achiev-
ing manufacturing accuracy. A collection of
efforts to investigate the effect of initial de-
viations on the stability behavior of thin
shells can be found for example, in refer-
ence [1].

An often employed method to solve dy-
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Based on the Hamilton’s principle, the nonlinear dynamic equilibrium equa- !
tions of a cylindrical shell subjected to axial loading or external pressure (dead
loading or external fluid pressure), considering the effect of the initial imperfec-
tions, are derived. Using the resulted equations, dynamic elastic and plastic

uckling of imperfect cylindrical shells are discussed. The nonaxisymmetric and
local bucklings are predicted using the proposed numerical method. Since the
! equilibrium equations are based on large deflection assumption, the results can
| be used slightly beyond the buckling state (postbuckling). Finally, calculations
! are carried out for typical cases of a cylindrical shell subjected to a step dynam-

namic buckling problems is to monitor the
structural response under increasing load
levels applying the criterion of Budiansky
[2, 3]. Budiansky and Hutchinson [4] devel-
oped a theory to relate critical dynamic
loads to static buckling loads of imperfect
shells.

Lindberg [5, 6] proposed the critical am-
plification criterion which is more appropri-
ate for pulse loads, while the threshold di-
vergence criterion used by Budiansky is
appropriate for step loads [6]. Another
method of analysis is to substitute an ap-
proximate solution for the displacement
components in the Hamilton’s equations,
where the reference [7] is an example.
Many researchers used Hsu’s general re-
sults [8] for the stability of coupled Hill’s

35



