4. Conclusion

We have shown that in the Hopf bifurca-
tion theorem for the differential equation:

X' (t, w) =1 (x (t, u), ) at least one peri-
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and that means for our transformed diffe-
rential equation:

FE W =N @) TN WE W (3.19)

with o (u) = w/2 we will have:

f@&ﬁﬂlmwn( m”)¥('“@)‘“” (&yq
1o 1 0 N&

W/2)E+ 0 @WE-[-(/2)E+ o WEIE

o WE+@/2)E-(1/ 0 @) {-@/2)E
+0 WES+ /D -W/2DE+ e (WESE)

(3.20)

now we can see that this differential equa-
tion has the same form as (1. 6) with o () =
uw/2and o (W) = (1 - @/2)) " it means
we can use the method described in section
2 or in problem 1 to find r (t, p) and T (u).

We will get:
r(t, ) =p2+ 0 (W) (3.2D)
TW=2n+0W*) (3.22)

For the solution x (t, u) of the trans-
formed differential equation (3.20) we get:

cos 9 (t, )1)

(xl(t,u)):r(t’u)(cos(p(t,}l)i:w,z o
sino (t, i

X2 {t, 1) sinQ{t, 1)

}Jr o™

(3.23)

and for our main differential equation (3.8)
we get from (3.16):

sing (L, 1)

W =N@x u)=u”2{
-cos @ (4, 1)

)+ O (HBIZ)

(3.24)
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Now I am going to draw two diagramms
for two different values for p (0. 50 and 1.0)
shown in Fig. 2.

In each figure we can see two closed
curves, one of them (drawn with «---- ) is de-
termined by the formula from (3.21) and
the other one (drawn with ----- } 18 deter-
mined by programming using the Runge-
kutta method. As we can see this curve
changes when u changes.

According to Runge-kutta method:

u=0.50 T (p) = 6.489

Angle X, (6 ) X, (£, 1)
0.000 0.63246 -0.00000
30.000 0.70500 0.40703
60.000 0.44562 0.77183
§0.000 -0.00092 0.70664
120.000 -0.28911 0.50075
150.000 -0.48105 0.27773
180.000 -0.63246 0.00000
216.000 -0.70500 -0.40703
240. 000 -0.44562 -0. 77183
270. 000 0. 00092 -0. 70664
300. 000 0.28911 -0.50075
330. 000 0.48105 -0.27773
360. 000 0. 63246 -0. 00000
Again:

p=1 T (w=7.255

Angle X; (6w X, (8, 1)
0.000 0.70711 -0.00000
30.000 0.92110 0.53179
60.000 0.80690 1.39758
90.000 -0.0043 0.99957
126.000 -0.34372 (0.59535
150.000 -0.53544 0.30914
180.000 -0.70710 0.00001
210.000 -0.92110 -0.53179
240.000 -0.80690 -1. 39758
270. 600 0. 00043 -0.99957
300. 000 0.34372  -0.59535
330. 000 0.533544  -0.30914
360. 000 0.70711 -0. 00000
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since o (p) = p and conversely o (1) = o

p+0O up), wegeto, =1
we know that w(u) = 1 and conversely o
(W=wp+w, p+ Ou n'?) and that means that

o, =1 and o, = 0.
We then find that:
Po(-0u /6 (0))?=(-1/-D"=1 3.4)
similarly we find for q, and s,: q,=0 and
$,=0
(3.5)
so we get for r(t, w): r(t,u) = p >+ O (u pn'?
(3.6)

and for T () we get:
forn>0(2m-6.283)
3.7

T =2n+0up»

Problem 2:
We want to solve the following differen-

tial equation

X1 =% (1) - (%1 (©))°

X2 (£) = X1 (1) + X2 (£) - (X1 (1)) X2 (1)

fi En=£-&
B W)= &y -E1 8, (3.8)

as we can see there is no similarity with
(1.6) so we should make a transformation
We therefore have to use the jacobian ma-
trix

(6%/85(&;»):( 38 , ) (3.9)

1288 p-&

A<u>=<6%/5§(®,u)>=(o 1) (3.10)
-lu

we shall now determine the eigenvalue of
the matrix A (u):
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|A(u)~x11=i )

’=7»2-ul+1(=0)
-1 p-A

(3.11)

A (W)= (/2)+ (@2 - 1) and Ao (1) =(W/2)- (/2 - 1)
for jul<2i.e.pe]-2,+2 [we have: (1/2)*- 1 < 0]
(3.12)

this means that A, () and A, (u) are for pe
[-2 + 2] complex.

We consider that for j = 1,2: Re (A, () )
=w?2=:aand

ReQ(ON'O)=12>0

further we consider for j = 1, 2: Im ()
W) =1-W2))"=0®Qw.

With using a suitable regular martix N
(1) we can calculate the matrix A (1) in
real-numbers to get the following form:

o o

N )“A<u>N<u>=( )
o) o) (3.13)

we can define

o) oW ) (3.14)

:N(u):=(
-1 0

as we know from linear algebra that we can
determine (N (u) )" as follows:

N Q)" '=(1/det (N (W))Adj(N () =

(l/co(u))( 0 “”(”)) (3.15)
1 o

with N(p) from (3.14) we get:

Xty =N@Wx () (3.16)

x(LW=NW) Xt,w (3.17)

it also means:

X=X =W F& W, w=
AN () FON () x (6 1), 1) (3.18)
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the following formula for the amplitude:
ot W=polt?+ gL cos @ (6 i)+ s sin @ (& 1) + G p'™)
2.7

and for the period we will get the follow-

ing formula:

Ty =Qrnlwe) { 1+u{-(w/wy)-

fou /(128 3o (O))1{ [2h (@, 0) + 11 (D,0) + 32 (D, 0)]
136 (D, 1) + £ (@, 1) - 2612 (D, W]

- 135112, 0) + £, (D, 0) + 21, (D, 0)]

126 (D, 1) - £11 (D, 1) - 36 (D, W] +

+ 10 (@, W) +

+8 { [£2(0,10)- (UL (@B, W) +

+£ (@, W [(1/2) 6 (B, 1) - f (D, W] }

+8{ [(U2)Th (D, 1) - F2 (D, WT-

-t (D, W [ (D, W) - (V2 T (B, W] }

+10(E@,W )}
13 o/ (48 0o (0) 11 (B, 1) + 1 (D, 1) - i (B, 1) -
- (D, W) 1} H+0O @) (2.8)

in which w,, ©, ®, &, ¢ Do, G and s, are
the coefficients hidden in A,, A, B, and B,.
They can be obtained very easily.

3. Numeric Solution for Two
Problems

Prebiem 1s
We want to solve a problem using the
knowledge we have gained from the above.
We want to produce a limit cycle of the
following differential equation:

X1 (€)= X1 (6) +Xa(t) - X1 (&) [x1 () +%2 ()]
X2' (€)= X1 () + L Xa() - X2 (8) [ (Y + 02 (0))1(3.1)
The function f has such a form:
Epbi+&-6i1)
E-Eituk-Erh)
(3.2)

& =i+ Ea-E 67 +E]
& =L+ 1k -Ea G+ 5]

20

if we compare (3.2) with (1.6), we will
see that offi)=p and w(p)=1.

Further, we can calculate the following
derivation:

f1(0,0,w)=p

£0,0,1=1

fi (&, En )= -r2- 28]
6 ELE W =1-28 &
€L ) =-1-28 &
BELEnp)=p-r2-2 &
fii G by =-6 &

fi2 (€1, &2 ) =-2 &

£ (&1, Ea ) =-2 &2

fn (&1, En W) =-2 &
11w =-25
& m)=-26

B Ea ) =28,
(61, &) =-6 &

finn €1, Ea ) =-6

fi (81, Eas ) =2
fie (G Eo ) =-2

£ (E1, 2, 1) =-6

fin (€1, &2 ) =0

fin (€1 62 ) =0

fln (€, & w) =0

22 (61, &2, 1) = 0

£(0,0,u)=-1
£(0,0, w=g
fi1 (0,0,w)=0
£2(0,0,0)=0
£5(0,0,u) =0
£2(0,0,1) =0
£11(0,0,1)=0
£2(0,0,1) =0
£:1(0,0,11)=0
£:(0,0,)=0
£11(0,0,u) =-6

i (0,0,p)=-2
£2(0,0,p)=-2
522(0,0, ) =-6
fin 6,0,1)=0
fin 0,0,u)=0
f12(0,0,11)=0
12 (0,0,1) =0

O O

substituting the values determined above
in (1.7) give us the following formula for o

{0y
6(0)=(1/16).0+(1/16)[-6-2-2-6]=-1 <0
(3.3)

and for r (t, u) from (2.7) we have ob-
tained:

£(t, W)=pol!+ quy co8 O (t, )+ s psin (e, j) + O ()
(3.3a)
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Hopf bifurcation:

1.2 Theorem of Hopf bifurcation

Under the conditions that:

f is a continuous function and f is 3
times continuous and differentiable in &,

£:Dx M—> R2

E ) = 1, p: ={ ? i?u; }
e

with Oe M, M c ®, M is open and (0,0) =
@eD,Dc %, Dis an open set and for
every pe M we have (@, w) =@, { has to
have the following form:

fEW=a@+oqwé+0(Eh

HEW=-0WE +oa @ +0 (&N (1.8)

in which the following functions are contin-
uous and 3 times continuous and differen-
tiable:
o M — %, otM =%, a(0) =0, o'(0) > 0,
o)z 0
with 1€ = (& + E%)" and

o (0)=(1/(16 5 (0)) {fi, (T, 0) [} (T, 0) - 1o (D, 0)] +

12 (D, 0) [f2 (D, 0) - £, (D, 0)] +
[f2 (2, 0) £ (D, 0) - £12 (B, 0) £, (2,001} +
(1/(16) [ 11 (B, 0) + 1150 (D, 0) + Fipz (T, 0)] + £ (D, 0]

(1.9
we will have:
{a) if 6(0)< O is then for x' (O)=f (x (1), ),
u=0 becomes a supercritical
Hopf-bifurcatio.
It means as long u < 0, @ is a sink and
as soon as u > 0, O is a source.
and there exists an orbital asymptic stable
w-limit cycle.
(b) if 6(0) > 0 is then for x' (t) = £ (x (1), w),
u=0 becomes a subcritical
Hopf-bifurcation.
It means as long as p>0, @ is a sink and
as sooun as u<(, & is a source.
and there exists an orbital asymptic unsta-
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ble w-limit cycle.

We can show that the theorem of Hopf-
bifurcation is not only valid for the special
differential equation x' (t) = f(x(t), w) but
also for a general differential equation

A2

:}Z

RCANES SEATINTE

2. Aproximation for Periodic So-
Jutions

To get an approximation for periodic so-
lutions we should concern ourselves with
the differential equation x' (t, p) = f(x(t, ),
1) and when we use the polar coordinates

X {t, Wy =1(t, L) cos o (t, 1) (2.1)

X (LW =1, Wsin@ 1) (2.2

we will finally get the following formula:

P )= () 1 (6 )+ (r (6 WY A+ () [ Ag)
(2.3)

O (LW =-0 W) +r (L, B+ (r (L p)’[By] (2.4)

A,, A,, B, and B, represent very long for-
mula that I am not including here, as they
contain some coefficients which have to be
found.

If we try the usual way to get these coef-
ficients, it will take long time and it will be
very complicated, therefore we will use the
method introduced by [2]

This method recommends for w(u) and

elp):
O (W)= @o+ wip + o u2+ O (1) (2.5)
OL(1): Ot + 02 + O (U3) (2.6)

After a while of calculation we will get

e
&




£, (&, ) =-0 (W) & + o () &+ (1/2) Fl1 (@, W) EF
+E (D WEE +(1/2) (D, ) B3+ (1/6) fin (D, ) &}
+(1/2) 02D, 1) ET o+ (112) i (B, W) 1 &3

+(1/6) 52 (D, W) €3+ O (&l

(1.6)

We can see the function W has some co-
efficients such as a(u), b(w), c(u), d(n), e(w,
g(w), h(w), j(u) and k(u). They are to be de-
termined useful. Therefore we should try to
determine them so that the function W is
(positive/negative) definite in a region
about (0,0) = @ and at a distance far enough
from @, for example along a closed curve
C, with @ € T (C), J(C) is inside of the
closed curve C-W is (negative/positive)
definite.

This task is not as fearsome as it seems,
since it can be done in stages.

We shall first consider just the case
where p=0, recalling that we want sign defi-
niteness even when ofw) = 0, but that a(p),
b(w), c(uw) and d (u) are O (1), we see that
we must equate the coefficients of ;. &.

£,.&,. and & &, in the function W* (1.3)
to zero.

This determines the coefficients a(u) , b
(w), c(n) and d(u) uniquely. To make the
quartic terms sign definite we shall certain-
ly have to make the sum of the terms in &',
£?,. &, and &' sign definite. Since a(y), b(w),
c() and d(n) are now fixed all that matters
is our choice of g(n) and j(u).

This means there is no loss of generality
in choosing e(u), h(w), and k(i) to make the
terms in &, & and & &, vanish. The ine-
quality constraints do not determine g(u)
and j(u) completely, so we can try to derive
a simpler yet equivalent constraint. Let us
make the nonezero quartic terms in W*
equal to a constant times a perfect square ¢
(w) (&%, + £%)* where o(u) is a function of p.

Substituting the values a(u), b(w), c(w), d
(w), g(w), and j(u) determined above gives
us the following formula for o(p) at critical-

ity:
o (0)=(1/16) {a (0) [3 11 (B, 0) + 2 (T, 0)] +

88

b(0) [3 11 (B, 0) + 411, (D, 0) +£2 (T, 0)] +
c(0) [£1 (B, 0) +4f1, (D, 0) +3 £, (D, 0)] +
d©O)[f51(3,0) + 35 (T, 0]+

£111 (D, 0) + 122 (D, 0) +£12 (B, 0) + 32 (D, 0)}

For o(0)=0, we can't say anything about
the periodic solutions considering the char-
acter of W.

For this perpose we should improve the
function W for order of four or higher and
then again try to find out if W* is definite,
but we will not do that in this work.

For u#0 we can determine the coeffi-
cients again in the same way as described
above.

Since these coefficients are continuous
we will again get the same formula for ¢(0)
if we set u=0.

Lemma 1.1 [Asymptotic stablity of the
solution 0 in x” (t) = f(x(1)) ]

f: D — ®™ is continuous and differentiable,
D c %", D is an open set, meN, (@)=,
(@} c @ c D, Qisanopensetand v: Q —
% is continuous and differentialable in Q, v
is positive definite in Q and v* is negative
definite in Q

= @ is an asymptotic stable solution of

x’ (O=f (x(1)).

Let us consider W* (&, p) again and dis-
cuss the following points:

1) 6(0) < 0.

2) o(0) > 0.

For o(0)=0 we won’t discuss because it
is not the scope of this work.

About point 1): we learn from the lemma
1.1 that @ is an asymptotic stable solution
for x'()=f(x(t), n). It means for ¢(0) < 0 we
will get a super critical Hopf bifurcation
when p becomes 0(u=0).

About point 2): “Changing the direction
of time” we can show that for o(0) >0 we
will not get an - limit cycle but we might
get an o-limit cycle. In this case if we
change the direction of time, then we will
get an o-limit cycle but because of
“change” it is actually an o-limit cycle of x'
O=f(x(0), w.

We have already shown the theorem of
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Fig. 1 as |l increases, a sink changes to a source, expelling or absorbing a limit cycle. (a) Type ! (Supercritical) bifurca-
tion (b) Type U (Subcritical) bifurcation.

1. Preliminaries

Let us to consider the following differn-
tial equations:

X" (O=f (x(t), ) (I.1)

in which f is a continuous function, and
that f is 3 times continuous and differentia-
blein &,

f:DxM— R

with 0eM, M c %, M is open and (0,0) =
@e D,Dc %% D is an open set and for eve-
ry ne M we have f(@, p) =0 .

Now we decide to use the Lyapunov
method to prove the existence of periodic
solutions. For this perpose, we choose for
the Lyapunov function, the following func-
tion W and we wish:

1. Function W is positive definite,
2. The derivation function W* has some
useful properties.

The question of which properties are
useful will be answered later.

Because it is essential to take account of

“higher order derivatives than the first, a
quadratic W will not do: to ensure sign def-
initeness of W* (at least when & is close

f1 €, 1)

(&’ ll) - f(§9 M) =(
£, 1)
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enough to 0), we need quartic terms.
Thus we should choose:

WEw=(1/2) EF+ED +(

13)a@ &l +b W ET &

+eWEES +(1IR)dWE + (e +g(WE &

+(U2)h W ET EF +j ()& &+ (/4 k () &

(1.2)

and for derivation function W* we have

the followig form:

W (8, 1) =0W/IE: (€, ) . 1 &, ) + OWIIE €, 1) . £ G, )

(1.3)

In the following we use some abbrevia-

tions in the form:

fia (@, 1) = (3" £/ 9E, DEq) (B, 1)

frae (D, 1) = (3° £/ 0E, 9Eq D

(1.4)

£ (D, 1) (1.5)

The differential equations can be more
comprehensively written:

fi )=o) &i+o )& +(1/2)1 (D, W&} -
L@ W E L+ (1) T @ EE
+(1/6) 111 (B, W) BT + (1/2) 112 (D, W ETE,

+(1/2) fizn (@, W) €1 €3 +(1/6

) 12 (@, 1) &3 +O (IEY)
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airoduction
The HOPF BIFURCATION THECREM
has become an important tool for under-
standing systems described by ordinary dif-
ferential equations, because it is one of the
few reliable methods of estabilishing the
existence of limit cycles in high-
dimentional systems. To use it effectively,
one must be aware of both its advantages
and disadvantages: for example, it is impor-
tant to appreciate the local nature of the the-
orem, which only makes predictions for un-
specified regions or parameter space and
behaviour space. These predictions may be
valid over regions which are very big or
very small and the usual form of the theorem
gives little help in determining their size.
Loosely, HOPF's theorem says that if an
n~-dimentional ordinary differential equation
x' (O)=f(x(1), u) depends on a real parameter
u and if on linearizing about an equilibrium

86

3, of conditions in naiure and in engineering, which are called
‘e consider a special condition in which a sysiem works weil
r L;a,a;@ges. This system will lose its balance and we can get pe-

show how we can get such a condition in a simple situaiion and

he L??eorem 07‘ FHOPEF BIFURCATTON

Republic of Austria

point we find that pairs of complex conju-
gate eigenvalues of the linearized system
cross the imaginary axis as p varies through
certain critical values, then for near - criti-
cal values of u there exist limit cycles close
to the equilibrium point. Just how near to-
criticality u has to be is not determined,
and indeed unless a certain rather compli-
cated expression (we shall call it the curva-
ture coefficient) is nonzero, the usual state-
ment of the theorem does not guarantee
existence at all. The sign of the curvature
coefficinet determines the stability of the
limit cycle, and whether the limit cycle ex-
ists for subcritical (u<uy,) or supercritical
u>N,) parameter values. (We shall adpot the
convention that near p=y, the real parts of
the eigenvalues increase as u increases.)
Fig. 1 shows this argument.
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