4.Conclusion
The method of weighting to

approximate equality constraints is
commonly used in practice. It was therefore
considered appropriate to make comparison
study with other alternative methods. For
this, four test case based on the 6-bus
.sample system were set up. The first
included all measurements without equality
constraints while the second treated three
zero injection as measurement, the third
case treated the three zero injections as a

pseudo measurements and finally in fourth

case the three zero injection measurements

are considered - as equality constraints.

Results were subsequently compared to
determine if the zero injection with equality
constraints had any advantage over the
others from the accuracy and convergence
point of view. It was concluded that the
convergence rate in the case of equality
constraints wears low since the gain matrix
dense. However  the

becomes more

redundancy will be improved, hence the
number of actual field measurements could

be reduced.
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Table 4. Comparison of sguared residual error with
number of iterations.

Number of Square of residuals error
iterations
Measured Estimated
Case 1 3 . A20ee7 2.211693
Case & 3 Q. 028438 Q. A1 342
Case 3 3 Q. 128432 Q. a@1353
Case 4 4 Q. A28420 ., aN1687
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Figure 1. Six bus network with measurements {93,
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Table 3. State Estimation Solution for Six - Bus Systes.

Pctual Qalne Measured value Estisated value Measured Value Estimated value Estimated Value Estimated Value

for Case 1 for Case 1 for Case 2,3,4  for Case 2 for case 3 for Case 4
Heasure-
gent V P a p g v p ] v P @ v P 1 v P g vp @
HV1 1.6508 . 1.8478 1.0485 1.8485 1. 8479
K61 1.8832 .2322 1.1389 .2748 1.1451 .2491  1.1369 2348  1.0965 .2227  1.@961 .2227  1.8974 .2199
Hi2 . 2985 -, 1447 . 3833 -. 1423 2941 -. 1485 2940 -, 1485 2926 ~. 1586
Hi4 L3606 2278 4479 L2327 L4024 L0348 L4743 . 2068 4412 ,2225 4418 2225 L4431 2228
H15 L3568 .1491 .3879 .1578  .3893 1975 L3691 L1614 L3612 1488 .3618 1468 L3617 . 1484
Hve 1,6500 1.0463 1.8499 1. 8489 1.8489
He2 .3816 8687 .5430 .8869  .D616 .B672 .D438 .9012 L5172 8785 .316% 8765 L3276 L8771
K1 -.2813 .1412 -.2934 . 1404 -.2846 L1437  -.2844 L1437  -.2B38 .1477
W23 .8298 -, 1863 . 8455 -, 1851 . 8383 -. 1851 . 8384 -, 1851 8372 -, 1831
4 ,3335 4965 3626 .5288  .3397 L4938 L3482 5292 3338 4927 3329 L4927 L3396 L4950
K25 L1551 .1848 1736 2197  .1799 .1868 2815 1937 L1576 . 1863 L1576 L1863 L1591 . 1875
H26 L2643 .1525 3112 .1716 .28 .15@9 3856 . 1827 L2726 L1589 L2724 L1589 2747 .1528
HV3 1.8760 1.8654 1.8684 1.8683 1,683
He3 6883 .9888 .6167 {.8164  .6156 .98%9 6107 1.8174 .3842 ,9839 L3839 .9839 L5954 L9879
H32 -.0294 .0746 - 0458 8739 -.8380 .873  -.0380 .973b -,8368 ,8736
M35 L1935 .2689 .2299 .3818  .2082 .2664 2169 L3871 1891 2786 L1898 .27% 1928 .2715
K36 L4362 .bA4D L4398 ,B635  .4525 L6436 L4918 L6748 L4332 L6397 <4328 .6396 L4402 L6428
HVE 9863 1.8032 .9823 1.8511 . 9857 9836 . 9850
M4 - 7884 ~. 7818 -6976 -, 7864 -. 7831 -.6930"-. 6819  -. 7826 -.6%9@2 ~ 7024 -.69%2  -.7112 ~.6908
M4l - 4204 ~.2836 - 4483 -, 2864 -/4299 -, 1979 - 4297 -, 1979 -.4317 -, 1978
K42 -~ 3171 ~. 4739 - 3238 -. 4719 ~ 3167 . 4704 -. 3166 -, 4784 -, 3238 -. 4721
M43 8428 -, 8235 @722 -.0181  .8570 - 8247 . 8488 -, 0150 <0448 -, 0219 8439 -.0219 L8435 -, 8217
KV .97%% 9847 9732 1. 0804 9779 9778 L9773
M5 -. 7883 -. 7087 - 6894 -, 7918 -.6962  -.6939°-.6987 -.7923 -.7056 - 7020 -, 785% -, 7066 -, 7069
1 - 449 ~. 1381 -, 3761 -, 1385 - J497 -, 1366 - 3493 -, 1366 -, 3582 -. 1361
K52 -. 1493 -. 1883 - 1734 -, 1869 -. 1518 ~. 1895 -.1518 -, 1895 -.1533 -. 1984
33 - 1812 -. 2685 -, 1952 -.2662 - 1768 -.2782 - 1767 -, 2782 - 1795 -, 2707
M54 -.B417 -. 8145 -, 8363 -, 8121 -. 0436 -.8159 ~.043 -. 0159 - 8431 -.0168
W36 8169 -, 0912 8274 -.0734  .0991 -.0925 L8500 -.8746 0197 -. 8935 <8196 -, 8934 .0195 -.8938
HV6 1,0815 1.8395 - 9964 1.0152 1. 0003 1. 6002 . 9998
M6 -.6998 -.6392 - 6833 - 7327 -.6905 -.6952°-.6812 - 7977 -.6990 - 7072 -.690Q0  -.7164 -, 6927
Ko -.2581 -. 1611 -, 2028 ~. 1567 - 2662 - 1587 -, 266@ - Y587  -.2681 -,1596
K63 - 4255 -.6018 - 4415 -, 5991 - 4226 -, 5975  -.4223 -.5974 -, 4295 ~-. 53996
M65 -.8163 .8637 -, 9085 .96353 -.0198 .8662  -.0189 .0662  -.B188 . ,@665

# These three are considered as zero injections and are added as measurements in case 2,
pseudo - measuresents in case 3 and equality constraints in case 4.
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6-bus network in Table 3. As can be seen convergence since gain matrix (AkTR°1AK)

from the Table 3 all four test cases are becomes more dense due to fill in resulting
observable and since the measurements are from matrix multiplication. However, in test
well distributed in the network, all the case four, the redundancy will be improved,
estimated quantities not only are close to hence the number of actual field
the actual values they give better estimate measurements could be reduced. Hence by -

m of the system than the measurements. Table this method the exact piece of information
4 shows the square residuals and number of can be  provided without  metering
required iteration for each test case. In test installation cost. In addition, since no
case four since the relative confidence of metering or telemetry is needed, it is not
injections are higher with respect to other subject of metering error or telemetry
measurements the convergence rate failure.

degrades. Also, the test case four has low

~Table 1. Network data for six bus systen.

Impedance (p.u.)

From To R X Suceptance/&
1 2 d. 1aed . caed . azoe
1 4 2. 2520 Q. 22 0. Q23
1 5 . e8Qd @, 3Qaa B. @300
& 3 0. 522 Q. 250 2. aZ0a
2 4 2. a5 @. 122a 2.2102
2 5 2. 1200 Q. 30212 Q. 2R
2 & Q. a7aa . 202 Q. D2SG
3 5 . 1202 Q. 2600 Q. 2S5
3 & 2. a2 2. 100@ @. 2102
4 S . e . 4222 2. D422
5 6 @, 1222 @. 32 Q. 302

Table 2. 8ix bus generator and load data.

Bus no. Gen. Voltage P Load G Load

(F.U.) (P.U) (F.U.) (F.U.)
1 @. a2 1. 23502 . o a. 02
= 2. 5 1.05@ 2, . @
3 Q. 6@ 1.a7@ 2. e Q. oz
4 @. v i.22a .72 . 7@
S 2.2 1. 2022 .72 .72
& 2.0 1. 00@ 2. 7 .72
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conditions for the unconstrained case, but
here we will have to satisfy third condition
such that
) lATA C
Vo L{X,A)= @7
Ic 0
Where V = L(X,A) is Hessian matrix and

must be positive semidefinite at the
minimum. The nonlinear equations (24) and
linear equation (26) may be solved for X by
an iterative procedure; therefore at each

iteration the following linearized equation

is solved.
ATA cT X] $1ATH
l .} (28)
C 0 Al 14

The above equation can be rewritten in

terms of PSSE’s variations such that:

AX

He 0 A AZe
Where H=dh/dX and He=dc/dX are Jacobian
matrices, AZ=z-h(X) and Ze=-C(X) are the

measurement error vectors and R is the

HTR'IH HeT HTRIAZ

" (29)

covariance matrix. In the computation of
equation 29, both the state vector x and
vector of multipliers A in each iteration are
updated. Also, the resultant system will be
order of n+p as compared to n for method
of weighting, but in gain matrix the order

reduces from m+p into m, which will

compensate for the increase size. The

triangular factorization and sparsity are

utilized in the computation; in order to

numerical

achieve stability and save

38/ AMIRKABIR

computer memory requirements.

3.Numerical Example

The sample numerical example is the
6-buses, 11-lines system which is taken
from Wood and Wollenberg {9] as shown in
Figure 1. The network and generation data
for the test system are shown in Tables 1
and 2. The metering locations, which have
been sclected by the author for the purpose
of the paper are shown in Figure 1. The
transmission network parameters are given
in per unit, considering 100 MVA and 230
KV wvalues. The number of state variables
are 11, and the total number of measurable
quantities varied between 30-33 in four test
case. These four test cases are as follows:

Case 1: Complete measurements system
with no zero injections.

Case 2: Complete measurements system,

where three zero injections are added as

measurements.
Case 3: Complete measurements
systems, where three zero injections are

added as pseudo-measurements.

Case 4; Complete measurements system,
where three zero injections are added as
equality constraints.
added

measurements are considered to have very

In test case 4 three new
high weighting (with small variance), in
order to process measurements with equality
specially

constraints. The  results of

developed computer program for the

purposed algorithm are presented for the



where

A=R Y2 H is mxm matrix of random
number.

and

b=R!? AZ is mx1 residual vector.

Thus equation (10) can be written as

mi)l(l (f(X) = 1,2(AX -b)T (AX-b)} (10)

Now for a function f(x) on IR" where f is

twice  continusly  differentiable in a

neighborhood of X, in order X to be a local

minimum, the following conditions must

hold:

g(X)= V £(X) = -ATb + ATAX (12)

g(X)=V £(X) | x=x" =0 (13)

X"= (ATA)'ATb  (14)

G(X) = V* f(x)=ATA (15)

where G{X") is positive definite. Thus, the

solution X" will be strict local minimum.
Now if function f(X) considered to be

the same as unconstrained case and P to be

a set of linear equality constraints such as

Cx=d (16)

then necessary conditions for a constrained

minimum at X can be written as:

i CX-d=0 an
Gi) gX)+CA=0 (18)

or equivalently

ZTg(X) =0 (19)

(iii) ZTG(X)Z is positive semi-definite (20)

where Z is an nx(n-p) matrix whose

columns form a basis for the null space of
the constraints. The optimality conditions
can be presented for the constrained least
square problem in terms of a lagranigian.

The problem is
min (f(X) = 172 (AX-b)T (AX-b)}  (21)
X

Subject to
CX-d=0 (22)

Where f(X) is the unconstrained least

squares objective function. C is a P x n
coefficient matrix for the constraints, and d
is a p x 1 vector. The method of Lagrange
multipliers solves the above constrained
minimization problem by first defining the

Lagrangian L(X,A).

L(X,A) = 172 (AX-b)T (AX-b) + AT(CX-d)
(23)

Where the

multipliers. The estimated state vector X is

vector A-is the Lagrange

the solution of equation 21, and must

satisfy the following optimality conditions
aL(X,A)

e = VL, (X,)=ATAX-ATb+CTA"  (24)
F)

or gX)+C™A=0 (25)
dL(X,7)

___a_A____ = VL, (X,)=CX-d=0 (26)

Note that, these are the same as optimality . |
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Lagrange multipliers [2], [6]. This method is
gaining popularity in recent state estimation
implementations. A third method uses direct
elimination of variables using the equalities.
The original objective function is reduced
to a lower order function which can be
solved by unconstrained methods [7]. Finally
Hachtel’s
equality constraints have been applied to

augmented matrix method with

power system state estimation since zero

injections are treated as equality
constraints, the remaining equations do not
have widely differing scales [8].

In this paper the general theory behind
the equality constrained  optimization
problem is utilized by applying Lagrange
multipliers to the equality constrained PSSE.
the gain

The triangular factorization of

matrix along with the optimal ordering
scheme is utilized in preserving sparsity.
Finally a numerical test problem for the
purposed method and specially developed

computer program is presented.

2.PSSE With Equality Constraints
In power system state estimation, for
system, there exist m

an N-bus power

measurements whose - objective is  the

minimization of the weighted sum of

squares of the measurement residuals. i.e.
min f(X) = [h(X)-ZI" R? [h(X)-Z] (1)
X

where

Z : mx1 measurement vector.
h(X) : mx1
relating the measured quantities to the state

nonlinear vector function

36 / AMIRKABIR

variable.

X : nx1 trye state vector.

R? : mxm diagonal weighting matrix.
The set relating the

of m equations

telemetered measurements and state
variables can be expressed as:

z=h(X) +n (2)

where n is the measurement error vector,
and it is assumed to have zero mean and
random variation, then

Eln=0 (3)

Em=R (4)

where R is mxm covariance matrix and E[}
Applying a
expansion to h(X) and

is the expectation value.

Taylor’s series

defining the mx1 residual measurement
vector as

Az=z-h(X,) (5)

and nx1 state vector as

AX = X-X, (6)

the objective function can be written as

min £(X) =IR? HAX- R"V2A 2I5 (7)

where I, dentoes a 2-norm and H is nxn

Jacobian matrix such that

oh(X)
H(Xg) = —==—=---—- | (8)
90X X=X,

Equation (7) can be written as standard
linearized model of the least squares
problem which is used at each iteration step

in the solution, this is

min (£(X) = 1/2AX-bE)  (9)
X



POWER SYSTEM STATIC-STATE ESTIMATION WITH EQUALITY
CONSTRAINTS
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ABSTRACT

within any electric power system network there are a number of buses which may have exact

information regarding their real andjor reactive power or there is neither generation nor load.

An advantage can be taken of these, known " zero injections " by formulating them as a set of

equality constraints. In this paper Lagrange multipliers method is applied to equality

constrained zero injections power system static state estimation. Finally test results for the

four test cases are presented.

KEY WORDS: State Estimation, power System, Lagrangian multipliers method, Equality

constraints
1. INTRODUCTION

Most power system state estimation
(PSSE) programs process only noise

corrupted measurement quantities to solve
state variables. However, within any power
system network there are a number of buses
where there is neither generation nor load,
or these buses may have exact information
from network model. These measurements
state

may be wused in estimation by

assigning  high  weighting (ie. small
variance). However, the large disparity in
the weights may cause the gain matrix to be
ill-conditioned, thus degrading the
convergence [1], ie. it may take more

iterations to converge, or, sometimes, fail

- [3-51

to converge at all. An advantage can be

"

taken of these, known " zero injection " by

formulating them as a set of equality
constraints [2l.  Hence the  overall
redundancy will be increased without

installing an additional metering. Very little
information has been provided in the

literature regarding the application of

constrained least squares method to the
problem of power system state estimation.
In general an approximating equality
constraints is used by applying an arbitrary
large weighting factor to each constraint
' treat the zero

Another method,

injection as equality constraints by using
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