From (3.4), (3.5), and (3.6), we have

n 0
R< € +mm{ § l(XOI’xh'XZI’YOl) "1{ ?‘;1

1o X1 Yoiry2i 1X2i) -

n
2 1Xgiyory i Y2i Ixirxa ’}

D

By eliminating the variable n in (3.9) (See [3]), it
follows that

R< €n+min{ I (XO' X1: X9 ;YO' ). '(xo'x1;y0

ryry2 b ) HXGiye v y2 Ixrxz)}

and converse is proved.

Achievability : See Theorem 4.1 in [5].

Now, we generalize Theorem 6 to the general relay

network with partial feedback.

Theorem 7: The Capacity of the general relay network
with N relays and with feedback from Y to all the re-
lays and feedback from relay ith to the all previous
relays is given by

C=supminj 1 {xq xq:5
Pixge weer o

lxi lyoly'H.“ (LN rYn

X417 % )} 0<i<n

1V, Conclusion

In this paper we established the Capacity Theo-
rems for some special relay nefworks, i.e.
The relay networks with partiél feedbacks.

The Capacity of general relay network is still

an open problem for futher research.
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Lemma 6: For the relay network in Fig. 7., we have and (3.5) is proved.

the followi bounds: ©)
e Tollowing upperoounds iii) HW"Y.O) <I(W:y.0'y.1'y_2)@ §1 i {w

n
: . < X4t KO 3.4 i1 i1 -
I Hwiy o <2 1 xouxqiexziyor) (3-4) Yoir¥yyy2i lye yiy3' )
n ; .
n =_2 “W" ir i 'I '.1o |-1
i) |(w;¥ o <i§1 l(xoi'x1i;Yoi'Y2i ‘X2i)(3-5) ;=1.1 Yoi' y1ir¥2i 'Yo ‘Y1
'v'é  Xqir x2i )

i-1
i) Hw; yo) < Z F(Xoiyoir Y1ir y2i | X13-%2; ) = E H lyoi yiry2i lVo 'yl1 '
(3.6 Q¥ ) - R
Proof: ) Y2 X1|'x2|.) H(Y0|'y1|'y2|
D . |1 |- L I )
i) 1w,y )= g Hw,y,, Wo” ) = @ ) 'yl Y2 XeiX2i W
<£1 H (Yoa'y1:'y2| Ix1irx2i ) - H

n .
2 Hily, [y —Hy,lyl!, w

i=1 A (yoi'yn'yzi 'XO;. X1jr X5 W+
where y:c-)1 = (y01, 'Yo,i-1) Y‘o1'y‘11'y'21 )
. @n
since. H(A|B,C)<KH(A|B), (see [6] =i2=1 H(Yoi'Yﬁ’yZi‘xﬁ'xZi)
we have, -H (YOI'Y1|'Y2| ' Xoir X1j X2; )

n . '_E X it voir Y1irvoi | %150 %0 )
I(W;XO) <2 (YOi)'H(YOi lyg1:W,X0;,X1i,X2i) i=1 ool Viiyai hirX2i
-and (3.6) is proved.

@

= 5_31 H(yg)-H (Yoi lxoi'xﬂ'xzi ) follows from the chain rule for mutual informa-
n . tion,

= i§1 (xq0xq i X2i 'yai ) follows from the fact that the network is memory-

less,
and (3.4} is proved. follows from the fact that the mutual informa-

) Q tions is a non-negati i

" ) gative quantity

(i) Hwiy o) < Hwiy gyl = 2 Hwiygp . 10
= follows from the fact that x5, =f,; (Y, ,yo ')

xp=fi0yg v yg,
follows from the fact that

H(A|B,C)<H(AI]B)

Lo
y2ilyg! !

© 6 © ® O

2 . 1
=2 Hwiyguyzilys'ys' xa)

- N
%_—1 H{Yoiy2i lVO ry2 Xgi) Now, let (M, n, p-z-‘) be any code for the network, as-

. i-1 : . . s nR !
H (Yoi'Yzi 1V’o 'V'21'X25: w) sume a uniformly distributed w&[ 1, 2" ,then

<§ H(Py,‘,| yg.lxz,) Hlyoiy2i ”R=H(‘w)=l(w;xo)+H(w!!o) (3.7)

lYo 'Y2 $X2i W Xojs Xq )
=§1H‘m'v2i‘x2i Hlyoiyzi  Hiwly ) <PJ .nR+h((PT) £ nEn.(3.8)
) From (3.7) and (s.8), it follows that

Fano’s inequality [6] requires that

‘XO;, X1;:X2;)

n .
='§_1 '(XOi'x1i;y0i'y2igx2i) <I(W,Y)+nen,
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Ro<!(xp:y) (2.17)
iii) Assuming sj is decoded correctly at the receiver,
then ‘;‘\”H = W'i-1 is declared as the part of index

sent in block (i—1) iff there exits a unique

w'ESS,' neg { y (i1} }where
ac-{ y__( i-1 ) } = { W': (\!_( w' ‘S.‘_.‘ ) R X_z( Si_1)

'Y_(i'1 )E An
) there of & i
reresfor ywi 4 =W g, iff
Ry <Ry +1{Uiylxg)(2.18)

IV) Knowing S 4, w'H , the receiver

declares  Wiq , iff for sufficiently

large n R, <I(xqiylXpU) (2.19)
Combining the conditions (2.16), and (2.19), we have
R2 Ry +Ry<H(Ulxg) +1(xqiylxa .U} (2.20)
Combining the conditions (2.17), (2.18), and (2.19),

we have
R<HU:ylxg )+ Hixgiy)+ Hxgiylxg. 0l =
g Uiy)= 1 {xXqx2 7 y) (2.21)

and the achievability is proved.

I11—Capacity of Relay Networks with Partial Feed-
backs.

In [5] the capacity of the relay network with feed-
back from the receiver to ali the relays and the source
and feedback from the second relay to the first relay
and the source and feedback from the first relay to

the source (Fig. 6.) was proved to be

X1V
/

N
! ~
L -~
’ -
| /,,—- YO
o ~ K //
~ Xo1 Y2 P
\\ _’/

-

Fig. 6. The Relay Network with Feedback

C= sup min { I(xb,x.px,z;y,o),l(xo‘
P(xlx1lx2)
X1 yory2 | 20 ) 1{Xoi Yor y1- ¥2 b‘31')(.’2’} (3.1)

In this work we drop the feedbacks to the source and
prove the capacity of the relay network with partial
feedback (Fig. 7) to be

YZ: Xo

Fig. 7. The Relay Network with Partial Feedback

C = Sup min { H(Xgr Xq: X9s yg 1+ 1{Xg0 %q
P xqs X1, X9)

iyory2 %2 HXo i Yory1oy2 I rX2)} (3.2),

i,e, dropping the feedback links to the source does
not change the capacity of the network. So, we can
use Theorem 4.5 in [5] for the general relay networks
with partial feedback.

Remark: Since Y is a degraded version of (Y, Y2),
and (Y, , Y ) is a degraded version of (Yo Y1, Y,),
the network shown in Fig. 7. is a degraded relay net-
work [5].

Theorem 5: The Capacity of the relay network with
partial feedback shown in Fig. 7. is given by

C= sup min { (X X9, X0iyg )+ 1{X60 39
P xgXq: X9 )

Proof : Converse
The converse is easily proved by using Fano’s
inequality [6] and the following lemma.,
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i§1 H (UI IY'i-1IUi-1' x2i) +H(Yi Iyi-1 ,Ui , X'zi)’
T . . 6]
H(y, ly' 1’U| 1.W)““H(Y; ’y"1.U',W’) <

i% HIU; [xg) + Hiy; 16 )=
H{ Yi Ix:‘;,X2i. yi'1,UM,'W' Ui )

O3

= i-1H (Ui |X2i M+ H (Yi‘XZi’Ui)-H (y;l x1i'x2i’Ui )=
n
5 H(Ui ‘X2i )+ HX“ 'Yj |X2; i )

i
where,

follows from the fact that mutual information is
a non-negative quantity,

and @ follow from the chain rule for entropy [6],
follows from the fact that Xps = fi (EJ,"" ),

fol(ljows from the fact that H(A |B, C) {H (A | B),
an

follows from the fact that the channel is memory-
less [6].
Using Fano’s inequality (2.5) and (2.2) and (2.14),

we get

® WO O

RSE, + min { o §1 FOxqi Xy ) -

:1- 21 H WU gy ) +1 (X0 yy; Ixziru’} (2.15)
By eliminating the variable n in (2.15), it follows that
R<E +min lxpxy), H{UIxy ) +

l(x-] ' Y1 |X2:U)

and the converse is proved.

Achievability: Proof follows under the same assump-

tions as in the Theorem 1.

Random Coding

1) Generate 2RO i d nsequences in xg , each

with probability

1

AT (x) |
P(x)= ¢ ity €AY (xg)
o .
' s otherwise
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Index them as x 5(s) ,s€ [1, 2nRo]
2) For each x2 (s), generate 2 R;conditionally in-

dependent n-sequences in Un, each with probability

_1
A2 Cu Ixy)

Plu) = ifu €Ag(xy,u)

0
s O0therwise

Index themas u (w '|s), w'E [1, 2"Rq]
3) For each u , generate 2"‘R'2 i..d. n-sequences x 4
each with probability
.
POeq) = I Aré (oxq Lul, if x; € Af; (x4, )
0

sotherwise-

Index them as x 4 (w'lw',s),w"e€[1,2"R2y
4) Randomly partition[ 1, 2"R1] into onRo cells

such that

P(wES;)=2"Ro,we [1,2"R1], 5N 5 =9,
i#i, Us;=01,2"R1],

Encoding: Let w, £ (Wi" Wi'") be the new index to
be sent in block i, and assume W'M €s;.
The source knowing sjand wj transmits

X'_1 (W"i ‘W'i ,Sl )-
The relay has an estimate W,i-1 of the previous index,

transmits X o(s;) ( \’I\V';_1 S

Decoding: (At the end of Block i)
We assume at the end of block (i—1), the receiver

knows { wq, ... ‘Wil (sq,.
the relay knows ( Wi,o.oWig)and (sq, .. .s;)
i} Knowing sj , and uppon receiving Y] (i) the relay
estimates W; =w; wassent iff Ry<H(Ulx2)(2.16)

s . . A :
if) The receiver estimates sj=s P by looking for a

..,si),and

unique s{such that (x ,(s;), y_(i) ) € A"é
Using Lemma 2.3 in [5],

$=s;, iff (for sufficiently large n)



R < 1ixy:¥.Yq Ix9p) (2.9)
i} The receiver estimates?;= s, by looking for aun-
x ofs)y i) € A"E*

Lemma 2.3 in [5], it is easy to see thatis; =

. Using
s i’With

arbitrarily small probablity of error provided n is suf-

ique s such that

ficiently large and

Ro <IH{xziy) (2.10)
iii) Assuming s; is decoded correctly at the receiver,
then QH = w is declared as the index in block (i—1),

iff there exists a unique
wes, N ¢f !(1-1)}
where [ { y (i-1) } is the list of indices w that the

receiver y considered to be “typical” with y (i—1) in
the (i—1)  block, i.e.

L {v_(i-ﬂ'} = {w: (x.q (w | s;.0, %9 (8;.4),

Vo) € A“E}‘.

From Lemmas 2.4 and 2.5 in [5], it is easy to see that
G’H = Wi with arbitrarily small probability of errors
if n is sufficiently large and

R <Ry +1(xq:ylxy) (2.11)
Combining the two constraints (2.10) and (2.11), we

have -

r<1i ()(2 y) +{ (X1 y!xz) =1 (X1,X2 Y)(2 12)
Therefore, from (2.9) and (2.12), we have
Ro< minfl (x1,x2 iy} 10 7.y ‘Xz’}(2.13)
and the achievability is proved.

Bounding the probabifity of Error: It can easily
be shown that with the above rates (2.13), Fl:' <e.
For the details of the calculation, See [3].

Theorem 3: The Capacity of the Relay Channel with

Feedback from Yy 0 X4 is given by (Fig.5.) -

C=max min

P(XA‘,XZ,U) {'(x1:x2;y),l(x1.;ylxz'u,+

H(fozi}

where U is an arbitrary auxiliary random variable.

Fig. 5. The Relay Channel with Feedback from y; to x4

-Corollaries:

1. In the relay channel (without feedback) if yqisa
determinist.ic function of X4 and x had f (XT’ x2),
the transmitter knows which symbol is going to be
sent by the relay because x,, = gi(y, i,

Therefore, we can assume U= \2 and get the capacity
of the semideterministic relay channel obtained in [4]
and [5].

2. Slnce the transmitter knows y 1 1,and X

2i%
g ( y1 )we can assumeU= X, and get the capacity

of the reversely degraded relay channel obtained in [3].

Proof : Convyerse
Lemma4: For the relay channel shown in Fig. 5., we

have the following upper bound
. < !
l(w'x)\§1 H(Ui'x2i)+l(X1i'yi |X2i,Ui),

wel1,2"R) (2.14)

Proof: in the followmg, we assume  xo, = f; (u 1)
where

= 9,(Y1 -1 ). e X = fi(Qi(Y1i-1” =h; (YTE.AT)

) e
Hw:y) <Hw:y.U)= 3331 Hw:y;U; lyi'1,Ui'1)=

®
Hly,u; y"! u'1) -Hly; oy Ly w =

AT

H(U,1Y'1,U'1)+H(y,ly' uh-

ﬂM:

) @
Hiy; ly' ‘,u L -Hiy v uiw -
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Fano’s inequality [6] requires that

Hiwly) <pl.nR+h(]) £ n.€n (2.5)
where

h(l-’;n—)- £ _;;T Iog_li;eﬁ - (1-3":) log ( 1-52")
Note that if P —>0 , then € 0

From (2.4) and (2.5), it foHows that

nR <Il(w;y)+n€En
From (2.3), (2.4), and (2.6), we have

(2.6)

.11
R< E€n+min {—ﬁ i§1 I(X",xzi:y;).%é

'(X1i;yi.Y15|X2i) } (2.7)

By eliminating the variable n in (2.7), it follows that
(See [3])
‘R < En+min {I(X1 Xoy) . Hxqiywyy lxz)}
(2.8)
Proof of Achievability : Fix a probability mass function
'p(x1 , Xg). The achivability proof involves 1) random
coding, 2) list codes, 3) Slepian-Wolf partitioning
4) superposition coding, and 5) block Markov encod-

ing at the relay and transmitter,
We consider B blocks of transmission,

each of n symbols, A sequence of B—1 indices w, €

’ 2nR]’ i=12.. B- 1, will be sent over the channel in
n B transmissions, (Note that as B — oo , for fixed n,
R(B-1) )

the rate B is arbitrarily close to R

Ineach nblockb=1,2, ..., B,weshall use the same
set of codewords

c- {51(WIS),52(S)} ,wer, 2R,

se, 2" x (1) ex], xy () Ex]

For reasons to be made clear later, we shall also need
a random partition

s= {8y 53R} of w=(1,20R)

into 2NR disjoint cells, 5; N sj =¢,{i#j),U si =W
i

Note that the feedback changes an arbitrary relay

channel into adegradedrelay channel in which Xq trans-
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mits information to x, by way of ypandy.
Clearly Y is a degraded form of (Y, Yq ).

Random Coding:
1) Generate 2"Riid. (independent, identically distri-

buted ) rlltz-]sequences in Xg , each with probability
= P(x,:) . Index them as
D(>_<2) i (x4

x ols),s€[1, 27 1

2) For each X5 (s) , generate 2" Reonditionally inde-
pendent n-sequences in xq , each with probability

Plx_4 I x ols)= iﬁl Plxq; 1 xg; (s)).

Index themas X ¢(w]s), wE[1; 2"R)

3) Randomly partition[ 1, 2"R1into 2"R cells
s, i€l1,2"Roy,

such that P(w eEsi) = z-nﬁ)-,si n Sj= ¢,
i #1), U, §=11,2"R],

Encoding: Let w,el1, 2"R]»be the new index to be
sent in block i, and assume thatw; ; € SThe source
knowing w; , sy transmitsx 4 (w; |'s; MThe relay has
an estimate  W;q of the previous index wy (to be
made precise in the decoding section), ( \fvi_j € §i )

transmits x_ 2(S;).

We assume at the end of block (i—1), the

11)-

and the relay knows (w1 oo sWioq),and (g, ..,
$; ). The decoding procedures at the end of block i

Decoding:

receiver knows (w] Seen, wi-2)’ and (s1 s esS,

are as follows:

i} knowing S; and uppon receiving v_1{i), (i), the
relay estimates the message of the transmitter \ﬁ",' =w
iff there exits a unique w such that xq (w | s.),
%olsi)yq (i),y(i) are jointly & - typical. (For the de-
finition of €& - typicality and its applications, See
Cover [7]), i.e.

beg Cwy 1) g s v l) v iD EAT, = w= 1,
Using Lemma 2.4 in [5], it can be shown that »’v‘;= w
with arbitrarily small probablity of error if



transmitted symbols { X g Xqj0 + Xpgi)®

Therefore, the joint probability mass function on
m X x%XXr}! X ... XXnN X xy% Xy? Koo Xy?\j
isgivenby p{w, X ,X 1,4 XN/Yo "-f'XN)=
Plw) 1?;11 P(xq;l w) Plxy; |y§'1) e PlX ly‘i_"1) .

P (Y gir -+ + YN Xioir - « XNi!

Where p(w) is the probability distribution on the mes-
sage wEm

If the message w € m is sent, let

N 2 P, {aty) #w bwew |

denote the conditional probability of error, The aver-
age probability of error, the achievable rate and the
capac'fiy of the network are defined as those of the
relay channel.

In [5] Aref established a general upper bound to

the capacity of relay networks which has a nice max-
flow min<cut [8] interpretation.
He also established the capacity when the network is
degraded, and when feedback is added from the sink
Y to the source and all the relays, and from ith node
to the all previous relays and the source, i.e, there is a
feedback frointo(xi_1 o ’XO): 1<i <N
The capacity of some deterministic relay networks
were also established in [5] and max-flow min-<cut
interpretation of the results were given.

In this paper, we establish the capacity of the re-
lay channel when there is only partial feedback avail-
able, i.e., when there isonly feedback from the receiver
to the relay, and when there is feedback from the relay
to the sender (source). Also the capacity of the?elay

networks with partial feedbacks is established. -

Il. Capacity of the Relay Channel with Partial Feed-
back ‘ «

In [3] the capacity of the relay channel with feedback

from (y,yq) to bothxq and X9 was proved (Fig. 3.)

to be

C = max min
P(X1.X2

In this work we establish the capacity of the relay

X x20y ), Xy, Y, |x2)},

Fig. 3: The Relay Channel with Feedback

channel when i) there is a feedback from y to X9s i)
there is a feedback from y, to x; . That is, the capa-
city of the partial feedbacks are established.

Theorem 1. : The capacity of the relay channel with
feedback from y to x, is given by (Fig. 4.)

C = max min

o { Lixq Xo/y) 1 (XY, g ;X2,}(2_”

L¥

Fig. 4: The Relay Channel with Feedback fromyto X,

Proof : Converse

The converse is proved by using Fano’s inequality [6]
and the following lemma,

Lemma 2. For the relay channel (Fig. 4.) we have the
following upperbounds

Hw;y) < 3
WS X xg) * WELT, 27R1(2,2)

”W‘Y’<§,“"1i?Yi'V1i Ix3) (2.3)

i

Prof : See [3, 5]
Let {M, n, Pg) be any code for the channel, assume a
uniformly distributedw& [1, 2”R];then

nR=H(W)=Hw;y)+H(w1!) ( 2.4 )
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finition used by Vander Meulen [1]. The channel is
memoryless in the sense that { Yir Y1) depends on
the past(x1I , Xé yonly through the current transmit-
ted symbols { xq;, X9; ). Thus, for any choice p(w),
w €m, and code choicexy ; [ 1, Z"Rl—*x?and relay
functions { f; }?31 , The joint probabil‘ity mass func-

tion on m Xx{' Xx:’z1 Xy" Xy{‘ is given by

Plw,x ,x ) = '_rll
4 _.11 2, \i.l !‘1 - P(W) ;=1 P(XIi,W)X

P{ Xoi | Y11 Y1i1 ) P{ Yi Y1i lXﬁ, Xo; ).

If the message w& m is sent, let

Aw) =P, { aly) # w lwsent)

denote the conditional probability of error. We define
the average probability of error of the code to be
Pr=2"R 2\ (w)

The probability of error is colculated under uniform
distribution over the codewordsw&| 1r2" R 1.The rate
R is said to be achievable by a relay channel if there
exists a sequence of (2"}, n ) codes with pl ~ 0.
The capacity C of the relay channel is the supremum
of the set of achievable rates.

In [3] a general upper-bound to the capacity of
any relay channel was established, and the capacity
when the relay channel is degraded, reversely degrad
ed, and when feedback is added from the receivers y
and yq' to both senders x4 and X5 were established.

In [4], EL Gamal and Aref established the capa-
city of the semideterministic relay channel.

Relay networks was introduced by Aref [5]. The

discrete memoryless relay network shown in Fig 2 is

Encoder / \x

a model for the communication between a source X,
and a sink Y, via N intermediate nodes called relay The
relays reéeive signals from the source and other nodes
anc_l/_t,h_én trasmit their information to help the sink to
resohﬁé his uncertainty about the message. To specify
the network, we-define 2N + 2 finite sets:

X1 Xqs e XY o ¥Vqo Y qand a probability transi-
tion matrix  P(yg, - YN | Xg oo o Xy ) defin-
edforall (y,, ....yy. X,
€Yo Xyq X XypyXx, X Xxy

In this model X, is the input to the network, Yg -

...,xN)

the ultimate output, Yj is the ith relay output and X
is the ith relay input. The problem is to find the capa-
city of the network between the source X(J and the
sink Yo .

An (M, n) code for the network consists of a set
of integers m=(1, ..., M}'an encoding function

Xo i M —>xg , a set of relay functions {f;;‘} such

that

Xij = i i ey 1< <l <N

A
% = g oo xin
ie ,xijéjth compu.at o X
function g:y_->m

For generality, all functions are allowed to be stochas-

and a decoding

tic functions. The inputX ij is allowed to depend only
on the past received signals at the ith node, i.e. , ( Yi1r

o Yu-ﬂ 4 yij'1 : . The network is memoryless

in-the sense that {y;,¥1j,++.,ypN;) dependson

the past (xé , x,; R xi\’ ) only through the present

N
\1 Decoder -

Sink

Fig. 2: General Discrete Memoryless Relay Network
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Capacity Theorems for the Relay Network with Partial Feedback
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ABSTRACT

The capacity of the relay channel with partial feedback is established. Also, the capacity
of the relay network with two nodes and partial feedback is established. The results are
generalized to the general relay network with partial feedback.

I— Intorduction

The discrete memoryless relay channel denoted
by (xq Xx9.Ply1yg lx1x2), Yy X y1)consists of four
finite sets:  xq1x2+Y:V1
bility distributions P(...I X, x9) on y X y,one for

and a collection of proba-

each {xq xo) .
Actually, X1 is the input to the channel and y is
the output, v is the output of the relay andxois the

input symbol chosen by the relay as shown in Fig. 1.

Relay
y1 H X1
Encoder Py1Y1 %1% ) Decoder .
Wo———-X1 o y——W
Transmitter Receiver

Fig 1: The Relay channel

The relay channel was introduced by Vander
Meulen [1] and was studied by Sato [2]. The follow-
ing discussion is based on Cover and EL Gamal [3].

A (2nR ,n) code for the relay channel consists
of a set of integersm={1 2, ..., 2"R¥A[1, 2nR]’an
encoding function x{ :[1,2"R1-> X7

a set of relay function { f, }" such that

Vi) =f by, 1<i<n
where, y“l'1 —é (Y11,...

x9i =i Vg1 Y920
' Y1'i_1 )

and af_iecoding function

giy" > [1,2"R]

Note that the allowed relay encoding functions actual-
ly form part of the definition of the relay channel be-
cause of th nonanticipatory condition of the relay.
The relay channel input Xo; isallowed to depend only

on the past{yqq,Yqgr - Yq j.q }Thisis the de-
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