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may result in an unstable model (if the coefficient of
32 in eq. 24 becomes negative). The influence of the
cancelled pole-zero pair is rather complex and is given
by egs. 17 and 22.

The influence of the system parametérs on the damping
ratio of the reduced order model is also important in
the study of the transient behavior and frequency res-
ponse of the model. The most important specifications,

in both time and frequency domains, for the second

order system is given by [5}.

(present overshoot) P O = 100 exp§ — 7r§'r /\/ 1- {? }

(25)
4
{peak time} t,, = ——— (26)
P P “”nr\/1 —f?
(settling time) t. = 27)
S wnky (
) 2
(rise time) t, = M (28)
Wnr &
(delay time)tg=(1 +0.7& ) /e (29)
= 1
Mpesk Mo = "/ (2g /1 -£2 (30
(N peak) W= /1~ zzf (31)
{bandwidth)
= 2 2
BW'-O)m, 1 —2Er+\/;+(1 -—2&3) (32)

After normalizing, these specifications ultimately
depend on Er. Let us consider the percent overshoot
as a measure of relative stability and bandwidth as a
measure of response speed. It is known that for the third
order system characterized by eq. 13, if we fix KV and
&, both measures increase with increasing A, reach a
maximum, and then decrease as the complex poles
become dominant and reach an asyptotic final value
[5]. These results are confirmed by eq 22 which shows
that ‘;’r reaches a minimum (when the system is not too
underdamped) at A = K- Also, it can be seen that
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when Kv or £ is changed, the specifications of the sys- '
tem and its model change in the same direction. This
match between the system and model specifications

becomes better as the valuesof A ,§, and £ are increased.

Conclusion

The investigation carried out in this paper confirms the
theoretical arguments concerning the effectiveness of
the Pade method (2). It has been shown that while
the Pade method shoutd ideally be used when simula-
ting the steady-state behavior of the system or carrying
out accuracy computations, in most cases the Pade
approximants are also capable of simulating the transient
behavior and the frequency response fairly well; espe-
cially when the input process does not have too abrupt
changes or the input frequency is not large. However,
it is very important to know when the Pade approxi-
mants fail to simulate the behavior of the given system.
It has been demonstrated in this paper that this may be
the case when there are small zeros, or the system is
too underdamped, or the dominant poles are not located
close together with enough distance from the non-do-

minant poles that are to be eliminated,

an
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[
_ n__ng2
BW=V 1+ —3- 20+

1
2§——wn/5

4

BW = (12)

It is seen that both bandwidths tend to decrease with
decreasing damping ratio & and/or increasing 8.

The above analysis, while revealing the main features
of the Pade method has an important drawback. The
second order transfer function given by eq. 1isnotvery
typical. Most practical systems involve a power element
with inertia, which yeilds a pole-zero excess of 2. There-
fore, we go on to consider the tranfer function

K (s+86)
(s+A) (52+2§wns+w?‘)

(13)

H(s) =

Not only is this more representative of practical systems
due to the increased complexity and pole-zero excess
of 2, but its consideration also allows us to study the
influence of the extra pole especially when X and W,
become comparable. Unfortunately, we do not have
close-form formulas for a third order system’s speci-
fications. However, the characteristics of these systems

are well known [5]. Again, we chose the gain

So that we have K'D =00

The Pade approximant is given by

- “ar 9

s =

r .s""+2§'r (om,s+cg?‘r (15)
Where

w
W= n 1/ (16)
1+ (28 —w,/8) (w, /N —w, /8)]"
28 +w, /A—w /8
¢, = . n (17)

2[14 28 —w /s —w /N —w, /8)]%

SR

The first three static error coefficients are equal for

2
w :
n 2,2 both the system and its reduced order model
\[+(1+——-——62 -2¢%)2 (1)

K =o° (18)
- (19)
Fo2t/w,+1/A=118
K, = 1
1 _ 1 _1,_2¢ ¢
" oY )= %5 (28 /@y +
_— (20)
1/A—=1/8)

or equivalently, expressing the above equations in terms

of KV we obtain

“’r21r= ‘1 !

" +(/K, =N (/K ~28 /@)

(21)
- 1/K,
Coa[ WK 1IN K,
S — (22)
~2¢/w) 1%
K. = 1
B 1/ — /MK =28 [ wp)
-2¢/w, 1/K, (23
H, (s) = !
P T Wl K, -1/ (17K,
(24)

—28/w )]s+ (17K ) s+1

The stability isrpeserved if K, and K areboth positive.
For K, to be positive the system should not be too
underdamped. But here we also have another thing to
worry about. I X is too small, especially when we have
large damping ratio and a distant zero, then Ka may be-
come negative (see eqs. 20, 23). On the other hand, it
can be seen that reduced order mode} is now capable of
simulating the undrdamped behavior of the system if
there are dominant complex poles and the damping

ratio £ is small enough. But too small damping ratios
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assume so that we have Kp =00,

The Pade approximant is given by

1
Hy (s) = (3
YR w1750

The first two static error coeficients are equal for both

systems

1
K, = ——— 5
Vo 2t/ w—-1/8 (&)

The existence of the zero gives us the necessary flexi-
bility for controlling the velocity error of the systems,
it is to be noted that the ability of automatic devices
to perform as required is often dependent to a large ex-

tent on their ability to follow constant-velocity inputs
[5]. Zero velocity error can be obtained by setting

(6)

If the value of the damping ratio £ is chosen less than
that indicated by eqg 6( wn/26) ie if the system is too
underdamped or the zero is too close to the origin,
then the time constant 7 = 1/KV becomes negative
and the system responds to ramp input with a lead
rather than lag. It is in this case (and only in this case)
that the Pade method fails to retain the stability of the

w,=2¢8

given system because there is no stable first order system
that can simulate this property of the second order sys-
tems. The Pade method has also been criticized for fail-
ing to cancel almost identical pole-zero pairs [6]. The
simple system considered here allows us to see how this
can happen. Suppose-the system is overdamped, so that
it has two distinct real poles, and has a zero very close
to the dominant pole. If the poles are designated as

7\1 and 7\2 then from eq 5 we have

UK, = 1UN+(8 =) /8N, (7

Cancelling out & and )(1 leaves out the second term in
eq 7, which, however, may be significant if the pole-
zero pair is too close to the origin. In other words, the

Pade method does not cancel the pole-zero pair when-
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ever this would cause a significant change in the steady-
state behavior of the system

The transient responses of the first and_ second order
systems given by egs. 1 and 2 are naturally different.
The zero tends to shift the approximant’s pole to the
right and the closer it is to the origin the more it dis-
places the pole. Also, the first order approximant
cannot simulate the oscillatory transient behavior of
the system when it is underdamped, and small damping
ratios tend to shift the approximant’s pole too much to
the left making it respond to jump inputs much quicker
than the given system. On the positive side, these
displacements tend to cancel each other. The transient
l;esponse of the system is fairly well simulated when
the system is overdamped and' the zero is not too small,
As for the frequency responses, they are given by

T+jw/é

T—w/w)?+j2fw/w,

Hijw)= (8)

1
1+] 28w/, — @l 5)

H, (jw)= (9)
These equations show how the shifts in the approxi-
mant’s pole occur in such a way to compensaté for
the errors caused by the cancellation of the extra pole
and zero subtracting eq. 9 from eq. 8 we get

()2

Hjw) - H (w)=
1—(-<)2 (4 + 28 wn
w ]

n
w, oy
(2§ ~——e — - — 1
2§ -3 =1
— 4t 49 [(1— =97 ) 20— Pn 401
an [ w;)(f 5 )+2¢]

@10

The difference increases when the damping ratio be-
comes too small or when the zero is too close to the
origin, and vanishes when the zero coincides with one
of the poles. The bandwidths of the system and its re-

duced order model are given by



upon the class of inputs likely to be applied as well as
whether the steady-state or ;he transient behavior of
the system is to be simulated. When the purpose of
reduced order modelling is to carry out analysis or de-
sign computations, which cannot easily be carried out
for less approximate but more complex models of the
systemn, it is very important to be able to predict the
effectiveness of the reduction method for general classes
of problems rather than particular instances. The Pade
method is currently the most popular technique for
order reduction, and naturally, it has been compared
with the other techniques in several different papers.
Very briefly, the reduced order model is chosen so that
as many terms of the power series expansion (Mac
Laurin series, Taylor series, or several series expansions
around different points) of its transfer function coincide
that of the given system as the degrees of freedom de-
termined by the choice of the reduced order and the
number of zeros will allow. The more common case of
equating the Mac Laurin series expansion coefTficients is
especially important, and will be the subject of our in-
vestigation in this paper, because it guarantees the re-
tention of the first time moments of the system [3].
The power series expansion around S = o9 s also im-
portant because it leads to an approximant that retains
the Markov parameters of the system. it is, therefore,
usually used when the simulation of the transient be-
havior is intended. {A good match around S = o in
the Laplace domain guarantees a good match around
t= 0in the time domain due to the initial value theorem).
However, it has been argued that a good simulation of
the initial response is not enough for a good or satis-
factory simulaiton of the transient response and match-
ing the Markov parameters, rather than retaining the
dominant poles, tends to retain the poles most distant
from the origin [?] .

The usual Pade method based on matching Mac Laurin
series expansion coefficients has maximum effective-

ness, when the simulation of the steady - state response

of the system to inputs having only significant low -

order power series expansion terms is intended [2].

The errors introduced by order reduction is usually no
more {and no less) than those introduced by approxi-
mating the input signal through step, ramp, parabola,
and higher-term functions, Thus, for example, it can be
ideally utilized in carrying out accuracy compulations.
As for simulating the transient behavior and the frequ-
ency response of the system, it has been pointed out
that although in most cases the Pade method has a
quite satisfactory performance ([3}], [4], there are
certain cases where the Pade approximants fail to simu-
late the behavior of the system [1], [2]. For example,
a well known and annoying aspect of the Pade approxi-
mation method is that it does not retain the stability
of the system. The power of this paper is to carry out
an investigation of these cases and compare empirical

results with theoretical predictions.

Pade Approximants of Simple Systems
It has been argued that the Pade approximant performs
poorly when the chosen reduced order is too smali to
be able to simulate all the different aspects of the com-
plex system’s behavior {3]. This can be demonstrated
by considering the Pade approximant of a second order
system where transfer function is

K {s+38)

H{s) =
st+ 2§ wps +:.or21

(1)

This system has enough degrees of freedom (adjustable)
parameters to allow the specification of performance
measures describing relative stability, accuracy, and
speed of response [B]. Furthermore, it also allows us
to study how complex poles and/or Zeros influence the
performance of the Pade approximants. Thus the
theoretical arguments about their potentially adverse
effects on the performance of Pade approximants can
be investigated emhérically. Since the approximant's

performance is not affected by the gain factor K, we

(2)
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The Performance of the Pade Approximants:
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ABSTRACT

The problem of modelling complex systemsvia reduced
order approximants has found many applications in
the analysis and design of control systems .Several
different methods ahve been suggested for reducing the
order of a given system .T he choice of the best method,
however, depends on the particular aspects of the given
system’s behavior which are to be simulated. For any
specific method there can be found cases Where the re-
duced order models 3 behaviors fail to match those of

the given systems. It isvery imﬂportant, therefore, to be
able to predict the performance of the reduced order

aproximant before actually carrying out the calculations
necessary for deriving the model. The purpose of this
paper is to investigate the performance of the Pade
method, which is one of the most commonly used
routines for order reduction. After a systematic discus-
sion of recent theoretical findings about the behavior
of Pade approximations, these findings are examined
empirically. The conditions under which there can be
mismatch between the system and model behaviors

are discussed.

Introduction

Increased attention has been devoted in recent years 1o
the problem of modelling large-scale or complex systems
via suitable reduced order approximants. So many dif-
ferent methods have been suggested for obtaining a re-
duced order model for any given system that their classi-
fication and comparative analysis has become a separate
area of investigations [1] , [2]. Each month, there
appear several papers providing examples that show
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their methods yeild better approximants than the com-
peting methods. However, all the different reduced
order models of a given system obtained by the applica-
tion of various reduction methods are essentially ap-
proximations of that system and can éimulate certain
aspects of the behavior of the given system better than
the other aspects of that system’s behavior. Thus the

effectiveness of the order reduction method depends




