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12—Notation:

The following symbols are used in this paper:

A B. C.,D. E., F., G

1t e et TR T i
D, teD 4 =gisplacement components,

ij v v, S’, S”, Rij =defined parameters,
El= flexural rigidity ,

FEFij=ﬁxed end force at i,

FEMiffexed end moment ati,

FEMfresultant joint moment at i,

FEPfresultant jointload at i,

FHahorizontai resultant of applied load to the ¢eiling portion ,
= vertical resultant of applied load to the ceiling portion.

L, L, Lg=lengths,

ML = moments of applied load in member ik with respect to k,

MR =moments of applied loads in member jk with respect to k ,
M§=applied moment at joint i,

M;;=member moment (ij} at i,

Mif' moments duye to rotation

&
M;j=moments due to translation ,
Pi=app!ied ioad at joint i,

Pij=member force (ij) ati,

Si-=stiffness entries ,

I
o, f =angles.




Table (7} — Solution Errors for Example Three

JOINT 3 B
MEMBER 21 23 32 34 35 53 b6
EXACT
MOMENT —0.148PL | D.149PL -0.116PL | 0. 0.115PL ~0.149PL | 0.149PL
CYCL
cal -0.159PL | 0.068PL ~0.043PL | ~0,014PL | —0,144PL | —0.106PL | 0.181PL

1

ERROR | -31% 64% 62% -26% 29% -21%

Mc&l -0.165PL. | 0.153PL -0.009PL | —0.017PL | 0.162PL -~0.136PL | 0.140PL
2

ERROR | —4% -3% 14% —~8% 9% 6%

Mcal —-0.184PL | 0.160PL -0,107PL | -0.010PL | 0.126PL -0.142PL 1 0.148PL
3

ERROR | —3% ~7% % —~8% 6% 0%

Mcai -0.152PL | 0.168PL ~0.112PL | —-0.007PL | 0.122PL ~0,145PL | 0.148PL
4

ERROR | —2% —7% 3% —8% 3% 1%

Mo ~0161PL | 0.167PL | —0.113PL | —0.004PL | 0.120PL | —0.147PL | 0.148PL
5

ERROR | ~1% 5% 2% ~4% 1% 0%

Mcai ~0.160PL | 0.184PL ~0.114PL | —0.003PL | 0.118PL ~0,148PL | 0.148PL
6

ERROR | 0% ~3% 1% —3% 1% 0%

Mca! ~0.150PL | 0.163PL ~0.116PL | —~0.002PL | 0.118PL —0.149P1. | 0.148PL
7

ERROR [ 0% 3% 0% -3% 0% 0%

Mcai —0.160PL | 0.162PL —~0.116PL | —0.001PL | 0.117PL ~0.149PL | 0.148PL .
8 .

ERROR | 0% -2% 0% 2% 0% 0%

60 JAMIRKABIR




Tahle {8} — Solution Errors for Example Two

JOINT 2 3 6
MEMBER 21 23 32 34 36 63 66
EXACT

MOMENT | —3.3M. | 3.3m. [29.3M |41.4m.| 20.3M. |33m. |-3.3m.
CYCL

yd

Moy | O —2.0M |203M [59.3m | 18.8M | —0.7M |-5.1M
1

ERROR |100% | 188% [31% |[—43% |36% |121% |-54%
My |51 | -6.1M [237M |302M | 224M | -15M |-24M
2

ERROR | —54% | 264% |19% |6% |23% |146% [27%
My | -24M | —27M |264M | 45.1M | 26.1M | ~0.3M | -4.2M
3

ERROR | 27% 182% |10% |-9% |14% |108% |-27%
M, |—42m | —15M |27.1M | 424 | 26.3M | 06M | -31M
4

ERROR | —27% | 145% |7% | -2% |10% [e2% |e%
Moy | —3M | —041M|27.8M | 427M| 27.1M | 1.3M | -37M
)

ERROR | 6% j03% |5% | —3% |7 |eox |-12%
M | -37M | 07M |28.2m|422M|Z77M | 18M | -33M
8

ERROR | —12% | 7% |a% | —2% |s% |a5% |o%
My, |-33M | 15M |285M| 42M. | 282M| 22 | -35M.
7

ERROR | 0% 6a% 3% | —1% |4% |33% |-6%
My |-35M | M |287m| 418 | 285 | 26M | -33M
8

ERROR | —6% a0% | 2% | -1% | 3% | 20% |o%

AMIRKABIR/59




58 f AMIRKABIR

Table {(8) — Solution Errors for Example One

-
JOINT 2 3
MEMBER | 21 23 32 34
EXACT

OMENT | 202.6Fa| —202.6Fa| —13.7Fs| 13.7Fs
CYCLE

cal 334Fs | —-B2Fa 38Fs 6Fa
([ — :

ERROR | —85% | 74% 377% 56%
rM“' 138Fa —~116Fa 26Fa 16Fa
2

ERROR | 31% 43% 289% -17%
Mcal 241Fa | —134Fa 26Fa 10Fa
ERROR | ~18% | 34% 282% 27%
M. 184Fs | ~166Fa | 16Fa 16Fa
1 ;

ERROR | 9% 23% 200% -17%
Mol 214Fs | —166Fa | 10Fa 12Fa
5

ERROR | —6% 18% 173% 12%
M |201Fa | -188Fa | —4Fa | 14Fs
B

ERROR | 0.% 7% 70% —2%
Mo 202Fs | —198Fs | —10Fa | 13.7Fs
12

ERROR | 0.% 2% 2% 0%
Mcsl 202.6Fa | —199Fa —~11Fa 13.7Fs
h3

rnaoa 0.% 2% 20% 0%




Tabe (4) — Continued

M| —086 0.18 0.35 -2.18 0.44 017 ~0.84 013 -059 3.08
4
M| 25.28 11.66 151 472 252 -2.48 -4.64 -1.49 5.23 11.38
7
M| —1.08 0.20 037 -230 0.46 0.18 -0.91 0.14 -0.58 3.03
5
/
M | 2665 11.82 162 5.06 270 -234 -4.39 -1.40 5.33 1156
4
M| 118 0.22 0.38 -237 0.47 0.19 -0.97 0.15 —0.57 2.98
6
M| 2583 11.90 1.68 5.26 2.80 -2.25 —4.22 -1.35 5.37 11.64
I
M| -119 0.23 039 -2.41 048 0.20 -1. 0.16 ~0.57 2.9§
7
"1 2596 11.96 172 5.39 2.87 -2.20 -4.12 132 5.40 1.7
?
M| -123 0.23 0.38 ~244 0.48 0.20 -1.02 0.16 —056 2.94
8
/,
M | 28.03 12. 1.76 5.46 281 -2.16 ~4.06 -1.30 5.41 11.74
momenT| 1167qd2 | —115qd2| 7.76qd% | 0.69qd? _8.20qd2| 413902 | —6.11ad%| 2.qd? -17.6qd2| 17.8qd%
FORCE | —-197qd | 186qd |.—1.96qd| 036qd | 168qd | —168qd| -1.12qd | 2.60qd —2.69qd | 2.68qd
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Table (4) — Solution of Example Four

JOINT 2 3 5 7
MEMBER | 21 23 32 34 35 53 56 57 75 78
A 1 -1 -1 1 -1 -1 1 -1 -1 1
B V4a 3/6d 354 3/10d 454 4/5d 3/10d 354 354 1/ad
c V/ad -3/54 354 3104 —4 /54 454 31104 ~3/6d —3/5d 1/4d
E 1/6d V54 ~15q 154 4154 | %154 | Vs /54 54 Vi6d
R ~0299 |00674 |00354 | —02212 | 00442 |00442 | -02212 | 00354 | 00674 | —0.299
D -3863d |-1781d |—-07879d| -2.461d | -1.313d | -1.313d | 2461d | —07878d | —1.781d | —3.863d
FEM, -12. 0. -3. —18.
FEP, —6/d 0. 3.6/d ~3.6/d
CYCLE
‘| 368 —0.69 0.36 221 0.44 -0.01 0.06 ~0.01 -0.98 5.11
1
M | 2318 10.68 136 4.24 2.26 -3.47 —6.50 -2.08 5.66 12.27
s
M | —o0s6 0.13 0.28 -176 0.36 0.13 -0.64 0.10 -058 3.02
2
M | 2318 10.68 1.08 3.38 1.80 ~3.02 —6.66 -1.81 456 10.08
’,
™M | o056 011 033 -2.04 0.41 013 ~0.68 0.10 ~0.64 331
3
“1 26.01 1153 1.37 4.29 2.20 -2.60 —6.06 -1.62 5.22 11.33
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Table (3) — Continued

M | 0.031 —0.006 |0 0.002 0. 0.005 ~0.026
6 , :
M | 0214 |-0114 |-0003 | 0006 | —0.003 0.107 0.201
M | 0.030 —0.006 |0 0.001 0. 0.005 -0.027
7 .
/
M | 0211 |-0113 |-0002 | —0004 | —0.002 0.108 0.203
/
M | 0.030 -0.006  |0. 0.001 0. 0.005 -0.027
8
7t
M | —0208 |-0112 |-0001 | —0.003 | —0.001 0.109 0.204
4
M | 0.029 -0.006 |0 0. 0. 0.005 —0.028
9
n
M | —0.208 |-0111  |-0001 | -0002 | —0.001 0.109 0.205
MOMENT | —0.149PL |0.151PL  |-0.115PL| O. 0.116PL | —0.149PL | 0.149PL
FORCE | -—0.329P fo.339P —0.339P | 0. 0.339P -0.339P | 0.327P
ROTAT|0I\1 0.013PL2/El‘0.013PL2/E|‘0. 0. 0. -0.013PL%/ ~0.013rL %/,
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Table (3) — Solution of example Three

JOINT 2 3 5
MEMBER | 21 23 32 34 36 63 56
A |1 -1 -1 1 1= - 1
8 3/L B/L 8IL : 3/L B/L B/L 3/L
c 3 -8, -8 3 -8, ~8, 3
2 -8, -8 2 -8, -8 2
E L l31 l3L h I3 faL I
IR 02641 | —0.0588 | 0.0417 | -0.2083 | 0.0417 00588 | -0.2041
o -0.2022L | —0.1668L | ~0.11L | -0.2064L| —0.11L —0.1658 | —0.2822L
FEM o 0 0
FEP, 2/3L 0. ‘ -2/3L
CYCLE
1o 0. -0004 | 0022 —0004 |  -0002 |o0.010
. ;
M | —0106 | -0.1084 |-0030 | -0.057 | —0.030 0.086 0.160
M | 0.037 -0.007 |-0002 | o0.008 -0002 | 0003 ~0.016
2
X/
M’ 10220 |-0122 |-0018 | -0.035 | —0018 0.092 0.172
M | 0037 0007 |-0001 | 0.007 -0.001 0.004 -0.020
3 Y/
M| -0228 |-0122 |-0012 | -0023 | -0012 0.101 0.189
M | 0.036 -0.007 |-0001 | 0004 ~0.001 0.006 -0.023
4
&
M | -0228 |-0118 |-0o00s | -0018 | -0.008 0.104 0.185
/
M | 0033 -0007 |0, 0/003 | O 0.006 -0.025
I
»”
m“] ~0217 |-0116 |-0008 | -0.010 | -0.008 0.106 0.199
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Table {2) — Continued

M| 1013 | -o0o99 |-383 | 3s09 | -3s3 | -100 | 1120
6

M| 2392 | -ae9 |-706 | -3603 | -7.06 504 | -2573

M| 11.21 —100 |-390 | 3978 -390 : | -116 | 11809
7 / ‘

m| 2573 | 504 |7.37 ~3759 | -1.37 ~634 | -27.25

/

M| 11.89 116 |-395 | 4028 | -3.96 -122 | 1245
8

Y

M| 2725 | -534 |-760 | -3876 | -7.60-7 | 554 | -28.25

/

M| 1245 122 |-398 | 4046 | -398 -125 | 1283
9 4

4

m| 2825 | -554 |-776 | 3960 | -7.76 ~5.69 | —20.04

4

M| 1283 | -125 |-401 | 4090 | —4.01 128 | 1312
10 pm

M| —2004 | -560 |-788 | -4021 | -7.88 ~680 | -29.59
MOMENT| —33M. | 2.6M 29M a16M. | 20M 20M. | -33m.
Force | —108My | 2, |-2My| ey, | -2y aMy | —108Myy
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Table (2) — Solution of Example Twe

JOINT 3
MEMBER | 21 23 32 34 36 53 56
A 1 -1 -1 1 -1 -1 1
B 3, % A 3 % A 3
c 3 -8 A 3y A 5, 3,
[E %hy 2ty 2y %ty 2y 2y %l
IR —03722 | 003865 | 0.029 0268 | 0.020 00365 | -0.3722
D —0.418b | —0.082b | —0.0704b] —0.368b | —0.0704b | —-0.082b | -0.418b
FEM, —~100M.
FEP, o.
CYCLE
rd
M | o 0. -2.91 28,64 -2.01 -0.11 1.08
1
M| o 0. 0. 0. 0. ~1.43 ~7.28
(1
o | 108 011 ~2.99 3066 -2.99 -0.48 4.89
2
4 R
M| ~7.20 -143 -43 2192 | -43 -2.38 122
rd
M| 480 -0.48 ~3.46 36.30 ~3.46 ~0.66 6.80
3
M| -122 -2.30 -5. -25.61 —5. ~3.49 ~17.80
7’
M| 680 -0.66 -3.6 36.71 -3.6 ~0.87 8.93
4
&
M| -1780 | —348 6.08 -3, -6.08 -84 -20.87
. M| 893 -0.87 -374 38.18 -374 -0.99 10.13
5
7| -2087 | -4 -8.61 -3372 | -6.81 -4.69 -23.92
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Table {1) — Continued

M | —181.77 |17.82 11.02 —~112.38
6 ° . .

m | 66056 |109.93 47,02 239.77

V4

M -189.34 | 1856 11.89 -121.34

7
#

M’ | 68461 |114.66 50.16 256.73

m | —188.04 | 1942 12.48 —-127.34
8 |

m* | s707 |117.00 5274 268.92

W | -20285 |18.90 12.98 -132,37
9 .

m* | e0s.e7 |118.62 54.56 278.21

M | —20762 | 2034 12.32 —136.88
10

" 81718 | 121.04 56.03 285.68

M 21050 | 20.64 13.60 ~138.71
"

}/

m~ | 62388 |12235 57.08 291.06

Y4

M -2130 |2088 13.80 ~140.76
12

M’ | 62846 |123.25 57.90 295.27

M —21475 | 21.08 13.95 —~142.34
13

V.

M - | e3217 |12398 68,51 298.36

M | -21616 |21.18 14.07 ~14351
14 o :

r/

M | 63484 |12450 58.98 30076
MOMENT | 2025Fs. |~200Fa | —118Fa| 13.7Fa
FORCE = | 621.2F |174F ~174F | 171F
ROTATION[-108.5Fe3,_ 1-100.6Fa5 | ~73Fe?;: —73Fa%

A B £ Ieq ‘ 4 El
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15 = Tabies:

JOINT 2
MEMBER | 21 23 32 34
A 1 -1 -1 1
B 3/a 6/a 6/a 3/a
¢ 3/a ~6/a —6/a 3/a
E 2/a ~2/a ~2/a 2/a
R -0.3722 | 0.0365 00365 | —da722
D —0.418a | —0.082a | -0082a | -0.418a
FEM, 0.
FEP, —800/a
CYCLE
M | o 0. - 2,393 —24.41
1
M | 33441 | 6558 1075 54.83
M | —104.96| 10.28 4.485 ~45.74
2
i
M | 38041 | 6852 2112 107.71
M | —11409| 1118 6.927 —70.64
3
M | 469.14 | 92. 29.63 151.10
M | —15399] 15.10 8.50 -86.72
4 ) R
M| 49158 | 96.41 37.20 189.69
m | —164.11| 16.08 10.03 -102.32
5 :
m”| s4200 | 106.31 4249 | 216.67
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Tagle (1) — Solution of Example One




accurate. By suing this method, approximate solution
will be achieved in the first few iterations. In order to
have an accurate solution the iteration must be con-
tinued until the rotation and translation moments do
not differ by more than acceptable errors in two sub-
sequent iterations. '

In the previous section, th ability of the method
in solving gable frames was demonstrated by numerical
examples. The iteration procedure was started with
zero initial values. As a matter on fact, initial values
need not always be zero and the iteration can start
with any initial values. A better choice of initial values
will result in faster convergence.

The rate of convergence towards the exact solut—
ion in this method depends upon type of structure
and loading condition. In general, gable frame with
higher stiffness has shorter iteration procedure than
the gable frame with flexible elements. It is clear that
the iteration can be started from any joint. Faster
convergence towards the exact solution is obtained if
the starting point has higher joint actions. The path of
iteration does not change the result, therefore the joint
with higher joint actions should have higher priority of
iteration for faster convergence.

Better initial estimation of moments and choice
of the next values in iteration process will shorten the
analysis. One way to estimate the moments in any
cycle, is to find the direction and variation of these
values. This can be done by the first two or three ite—

rations.

7 — Error study:

According to the points presented in the last section
several factors will affect the required number of cycles
of ireration for a solution with a desired accuracy. In
order to have a feeling of the rate of convergence some
error studies are presented in this section. This study
is based bn the relative deviation error of member end
moment. The difference between the exact and calc—

ulated values divided by the exact value is an indication

of this error for any member and moment.

The first three example problems are chosen for
this study. Table (5) presents the error in each cycle of
gable frame for example one. Error study of gable fr-
ames in examples two and three are presented in table
(6) and (7) respectively. From these studies, it is con-
cluded that, with no fast convergence plan, the rate of
convergence of the method is good, comparable with
similaf methods such as moment distribution and ka-

ni‘s method.

8— Summary and Conclusion:

In this paper, a formulation for calculating end
moments of gable frame members which are primarily
subjected to bending is presented. It was assumed that
structure behaves linearly elastic and has small def—
ormation. As a mommon sign convention, counterc—
lockwise end moment and rotation of members are
considered positive.

The method presented here can be applied to gable
frame composed fo prismatic members subjected to
any type of loading. Furthermore, this procedure is
convenient for hand calculation and because its for—
mulae have cyclic nature, they can be adapted to co—
mputer programming very easily. The ability of the

method has been demonstrated with four example
problems. Analysis with this procedure is easy and
quick and can be continued up to any desired accuracy.
This method has a built— in error— elimination capa—
bility and the error in the member end— moment will

disappear automatically by iteration procedure.

&
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6~ Calculate the joint displacements. if it is req—

uired, Equations (15) and (16) can be used for this

purpose,

It is clear that iteration can be performed first
on either rotation moment or translation moment.
This means that the use of corresponding iteration
equation does not affect the final results. It is better
to start with the one which has greater effect. Furth—
ermore, the choice of starting joint does not affect
the final results. However, for faster convergence, it

is better to start at the joint with the greater joint

actions, .

5— Hlustrative examples:

In order to demonstrate the use of the computa—
tional procedure, four examples are solved fn this sect—
ion. The first example is a structure under the conc—
entrated joint load. A twospan gable frame under co—
ncentrated moment is solved in the second example.
Another two - span gable frame subjected to conce—
ntrated roof loads is analyzed in the third example.
Finally, the fourth example shows the ability of this
procedure in analyzing the frame with three spans s—
ubjected to distributed member force.

5—1— Example one:

Figure (1) shows agable frame which is solved as
a first example. Beams and columns are prismatic
members and their broperties along with the applied
load are given in this figure. It is aimed to find the end
moment of the hembers.The effect of concentrated
joint load is presented in this example.

In order to demonstrate the use of iterative equ—
ations clearly, it is suggested that the required para—
meters and calculated values be presented in a table.
Tabte (1) shows these values. This table clearly indicates
the calculated values in each cycle. THe resuits, that
is, end actions of members and.joint displacements,
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are shown in this table. It should be noted that after
sufficient iteration, the final results are comparable

with the exact solution (1).

5-2— Example two

A two—span gable frame is given in figure (2} .
It is required to calculate end moments of all members.
The property of the frame members and appiled
conéentrated joint moment are given in the figure.
In this example the ability of the method is tested for
concentrated joint moment. Table (2) shows all
parameters and calculated values in each cycle. The
results presented in this tabﬂ are comparable with the

exact solution (1).

5~3-— Example three:

Analyze the frame shown in figure (3). This
problem is available on page 296, in the textbook of
“Structural Analysis” by Ghali and Neville (2). The
answers of this problem are checked with resuits of
the presented method.

Required parameters and calculated values for
this example are shown in Table (3), The results are
comparable with the answers supplied by reference
(2). This example proves that the method is able to

consider roof loads applied to gable frames.

5— 4 Example four: ’

Distributed loads on column and roof of gable
frames are considered in this example. A three — span
gable frame which is shown in figure (4) is solved,
Dimensions of gable frame and load properties are giv—
en in this figure and the flexural rigidity of all members
is assumed to be constant El. Table (4) presents the
solution for example four. This example shows the

ability of the method to analyze multispan gable frame.

6 — Convergence Factors:
For design'purpose, the solution need not be very




/4 ’, v /

All of members meeting at a general joint , i
should satisfy the compatibility condition. In other
words, the displacement for any member must be the
{15 )and (9) along

with compatibility condition for joint i, the following

same. Using equations { 20 } ,

equation which is the iteration equation for the rota—

tion of the joint results:

M =R, (FEM+ EaM +%AUM +EJM ;) (23)

This equation can be used iteratively to find the
moment due to rotation of any joint. In eguation {23)
some parameters are used which can be defined in the

following equations:

in the second part of this section, the iteration
equation for the translation of joint is presented. Again
the compatibility condition for a general joint, i, is
considered. Using this condition along with equations
{(10), (17) and (19), results in the iteration equation

for translation effect of the joint as follows:

Mi=D(FEP+ 2B, Mlj ch” it S ,,) (26)

In above equation some parameters are used, and
some others will be used later. These parameters are

defined in the foliowing equations :

— {844/ Zs")ij (27)
By=(542/S24); (28)
€= (514/S20); (20]

i~ (S43/523k (30)

i~ (S22/824);; : (31}

Gij= (814/S14)y (32)

{teration eguation for translation effects, that is,
equation (26}, can be solved iteratively for any joint
to give the corresponding moments, Finally, the effect
of rotations and translation can be superimposed to
find the end actions of members. This can be done by
utilizing equations {19}, {20} and (28) to (32)..The

results are presented in the following equations:

P “FEF +G M +B M +E H‘CE]MB‘ (33)

My = FEM; + Aj M7 + B Mg + M7+ ML (3g)
U v v o~ g ur st
4— Numerical procedure:

All of the aforementioned computational efforts
are employed to find the end moment of the gable
frame members. The following steps summarize the
numerical procedure to perform the gable frame

analysis:

1~ Find the required parameters such as Al!'

B, ... etc. from equations {24), {25), (27) to (32},

2— Caleculate the fixed end moments in columns
and ceilings. Equations {5}, {8}, {7} and (8} can be used

for this purpose.

3— Add up the fixed end actions of all members
to find the joint actions. Equations (9) and (10) are

used in this step.

4— Solve the set of equations (23} and (26} by
performing Gauss — Seidel iteration. This step must

by repeated until the required accuracy is reached.

- [Jetermine the end actions of all members by

utilizing eguations {33} and {24).
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+§ ) iteration equations. In the first part of this section

(5) the rotation equation is derived from figure (6) for

rd
F EMH = FEM jy — 0.5S( FEM,, + F EMk; V(148 ) which the ceiling portion stiffness is written. Moments

(6)

The subscript of fixed end moments in the above
equations shows the moment due to loads of member
ik and kj when these members are fixed at both ends.
Using the equilibrium equations for structure of figure
{7), the end forces FEFij and FEFji are obtained. These
values are expressed in terms of vertical and horizontal
resultant forces of applied load to the ceiling portion,
Fv and FH' moments of applied loads in member ik
with respect to k, ML' and moments of applied loads
in member jk with respect to k, MR' The final forms
ofend forces after simplificationare given in the follow-

ing equations:

FEFﬂ =[1/( Ténoc+Tan{3 M {—FV—FHTan&
[1A+E)IC FEM +FEM,; )(1.6/L + (1-058)/
Mp)/tal (1)

The sign convention for joint forces is assumed
to be positive if loads are applied in the directions of
-, 1, andj . After calculating the joint equivalent

foad, these values are added to the corresponding con-

centrated loads applied at the joints. If P, and Mi are.

applied at joint i then the resuitant joint loads at this
joint, E-'EPi and FEMi, can be found from following

equations: ‘
FEM; = ZFEM —M, (9)

3 3— lteration equations:
The effecis of rotation and translation of a joint

on the induced moment ere presented in the form of
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and forces at joints i and j of ceiling portion are written

as follows:

PiiFEFj¥511*Dq*812D2+813 D348, Dy (1)
M =FEM;+S,; D145, D,+8,3 DS54 D, (12)
Pji= FEF;i*S31 D1#835 D5*S33 D3#83, D, (13)
Mj=FEM;;+S41 D485, D,#S5 D3*844D4 (1)

Moments due to rotation are denoted by single
prime and moments due to translation are denoted by
double prime. Using stiffness coefficients which relate
these moments to joint displacements, the following

equations can be written:

rd

M;j=S24 D, (15)
, -

M;;=842D, (16)
%

M;jS14 D1 (17)
" o=

M;;=S35 D3 (18)

The joint force and moment can be written in
terms of rotation and translation moments. This can
be done, if the displacements from equation (11) to
{18) are omitted, The results after this operation are

in the form of foliowing equations:

‘ % 7
Pij=FEFj+ (Sq9/814)M;+(812/854)M;;+(S 1 5/S,5)
4 4
Mji+(S14/S24M;; (19)

- 7 I 7 rd
MijFEMy+(S12/S14)MijH820/S ) MMM, ()

_‘ r/4 rd

 ea® »
M;i+(S34/894)M;; {21



Equations (2) define the stiffness matrix of the
ceiling portion of the gable frame. It is clear that out
of sixteen entries of stiffness matrix only six indepen-
dent entries exist. In order to simplify the equations,

new terms are used which are defined as follows:

S=(EW/L) yy / (EVLYy
§ - [3cOSB(EN ] / [LR(1+S)(Tan cr+ Tanf)]
L=L, +Lg

(3)

The set of equations(2) can be further simplified
if the symmetry of the ceiling portion is considered.
In the case that the ceiling portion of structure has a
vertical axis of symmetry the entries of stiffness matrix

can be written as follows:

$4q = 48E1COS° of (L3 sIN? o)

$49 = — 12EICOS? o/(LZSIN o)

$13= 11

S14=S42

S, = TEICOS /L

23 ~S12

$94= —Spol7

$33=S11

S34= 512

S44= 522 |
(4)

¢
C‘ L

Two points should be noted at this stage. The first
point is concerning the independence of the entries of
stiffness matrix for the symmetric ceiling. From equa-
tions(4), it is clear that only three independent entries
of stiffness matrix exist. The second point is that all
of the stiffness matrices written so far are symmetric
and the unwritten stiffness entries can be found from

the given parts.

32— Equivalent loads:

Gable frames are subjected to the joint loads as
well as the member loads. On the other hand, the itera—
tion equations are written for the joints. Therefore,
equivalent joint loads for the given member loads
should be determined.

The equivalent joint loads for any type of loading
applied to the columns of the frame are given in the
textbooks of computer methods in structural analysis.
In this section the equivalent loads for the ceiling por-
tion of gable frame are presented. In order to find
these loads, a ceiling portion under general loading is
assumed. The end joints of this structure, as shown in
figure (7), are fixed and action is to be calculated.

Several methods can be utilized for calculating
fixed end actions. In this paper, slope defiection method
is used to find displacement and fixed end actions. The
fixed end actions are presented in terms of fixed end

moment of members ik and jk in the following equa-

tions:

K

.
. J. Lr Vs
% EI, L PR
* Figure (7) — A Ceiling Portion Under General Loads
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structures (5). A general column is shown in figure(5).
In this figure D1 toD4 shows the displacement com—
ponents. Neglecting the axial effect, the stiffness of
columns with flexural rigidity El and length L is given

as follows:

S49= 12613
_ 2
$,, = 6EI/L

$13= -S43
$14=%42
S = 4EI/L

523812
824 = 2Ei/L
S33=S4,
$34= 512
S4a=522 (1)

A general ceiling portion of the gable frame with
four degrees of freedom is shown in figure (8). The
vertical component at joints i and j does not exist due
to inextension of the columns at these joints. The stiff-
ness matrix of ceiling portion of the frame is required
for the derivation of iteration equations . Several me-
thods can be utilized to obtain the entries of stiffness
matrix for céiling portion of the gable frames. In this
paper, the simplest method which is based on the de—
finition of stiffness coefficient is used. According to
definition of stiffness for each degree of freedom, there
are the forces that must be applied at all degrees of
freedom to produce a unit displacement at that degree
of freedom.

One degree of freedom at each time is released and
unit displacement at this degree of freedom is imposed
on the ceiling portion of the structure. As a result four
structures are required to be analyzed for finding all
entries of stiffness matrix. Different methods can be
utilized for these analyses. In this paper, slope deflec-
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Figure (8) ~ A Ceiling Partign of Gable Frame

tion method is used. First the displacement and then
unknown forces which are stiffness coefficients are
found. The results after simplifying can be presented

as following equations:

$49° é’(s; AL+4/L+SI4CIS)/ L (Tan o+ Tanf)]
849 = —S(1+2U+ L/S)

5137 7511

S14=8(2++§)

Spp = [(3+88)/(1+ )1 (EW/L)

537512

S,4 = = [1/(148)] (EN/L)jK

S33=5p

S34= 515

Sgq=-14+38)s,,

(2)
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Figure (1) — Gable Frame Under Concentrated Load
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Figure (2) — Gable Frame Under Concentrated Moment
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Figure (3) — Two — Span Gable Frame Under Concentrated Loads
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Figure (4) — Gable Frame Under Distributed Loads -
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numerical examples will also be given.

The method presented here can be applied to the
single span as well as multispan gable frames. Further-
more, this method is convenient for ordinary calcula-
tor, and because the procedure has cyclicnature it can

very easily be adapted to computer programming,

2- A short historical background:

The concept of framework analysis was started in
nineteenth century by the efforts of Maxwell, Castigli-
ano and Mohr, among others. In that era, structural
analysis was usually based on force method in which
the member forces were chosen as unknowns. Although
force method is easy to use for small problems, it needs
solution of a large number of a!gebraié equations for
large indeterminate frames. _ ,

Maney in United States and 'Ostenfeid in Denmark
presented the basic ideas of ﬂ'amework analysis based
on displacement parameters in about 1915 (6). Hardy
Cross introduced the moment distribution method in
1930 (3). At that time, larger frameworks which were
hard to treat by force method were solved by moment
distribution. The moment distribution method was a
great tool for structural analysis for many years. It is
still a good too! for manual solution of small frame—
works., '

An excellent extension of the siope- deflection
method was presented by Gasper Kani of Germany(4).
This method has the simplicity of moment distribution

method and can be applied to rectangular frames, Kani's
method is able to analyze the simple frame with or
without joint sway, It has the advantages of simplicity,
speed and a built— i error— elimination capability SO
that computational errors automatically disappear in
subseguent cparations. '

In early 1950s, digital computers were available

in the market. Speed and accuracy of computer made
it a very common tool of structural analysis. Matrix

structural analysis and finite element method which
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use the computer were introduced for analysis of any
type of structure, At the present time, most of struc—
tural analysis methods for complex structure use finite
element.

in the era of computers, classical methods still
have their values. These methods are useful.for manual
analysis of structure. Furthermore, these methods are
very helpful for visualizing structural behavior. In this
paper an iteration procedure similar to Kani’s method,

which is adaptable to gable frame analysis, is presented.

3— Formulation:

Gable frames are usually used in one story building
with long span and high rise. One of the uses of this
type of structure is ih industrial buildings such as fac-
tories. These structures are used in different shapes.
Some gable frames under different loadings are shown
in figures (1) to (4}, -

Each bay of gable frame consists of columns and
ceiling portions. Member end—moments of these parts
are induced from joint rotation and joint translation.
For the ceiling portion, the cap part, and columns, the
load~ displacement relations aré established. From
these relations, the iteratioh equations which are able
to analyze the structure will be found. The result satis-
fies the equilibrium and compatibility conditions.

In the process of applying the interation equa—
tions, the fixity of the column ends will be enforced.
As a result, the equilibrium, compatibility and boun—
dary conditions required forvalid structural solutions
are simultaneously satisfied. All of the equations deriv-
ed are based on the assumption that the structure
behaves linearly elastic and the resultant deformations

are small,

3—1- Stiffness matrices:
Column stiffness entries are well known and are

available in the textbooks on computer analysis. of
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A formulation for calculating end
moments of gable frame members which are primarily
subjected to bending is presented. The resuitant equa-
tions can be solved by Gauss—seidel iteration. Compu-

tational procedure is given, and based on that, sample

Abstract

problems are solved. The method presented in this
paper can be applied to the single span as well as mul-
tispan gable frames, In addition, the procedure is con—
venient for ordinary calculator user and also it can be

utilized for computer programming.

1— Introduction:

The moment distribution method was developed
by Hardy Cross. He solved the joint—equilibrium equa-
tions by using Gauss seidel iteration (9). This method
is easy and quick and also it is one of the most comm-
only used analytical procedures in structural engineer-
ing (6).

The Kani's method is similar to moment distribu-
tion. This method utilizes the Gauss— Seidel iteration
to solve the slope— deflection eqt/x‘ations without ex—
plicitly writing these equations. By iterating the un—
known member end— moments, Kani's method will
result in any desired accuracy in the member end
moments. The Kani's method is easy and quick and
also has a built— in error— elimination capability(7).
This means that computational errors in the moment
iteration will automatically disappear in subsequent

operations. For these advantages, the method is very

useful for manual analysis of the rectangular rigid
frame structures (8).

The moment distribution has a lengthy procedure
in analyzing the frame structures with several degrges
of side— sway. However, Kani's method can easily
handle the rectangular frame with multiple degrees of
side— sway. Manual analysis of gable frames mostly
uses the moment distribution or siope deflection
methods(3). These methods are usually lengthy and
have no built in error— efimination capability.

Although, Kani’s method is available for rectan—
gular frames, the author is not aware of a similar pro-
cedure applied to the gable frames. In this paper, ana-
lysis of.gable frames using iteration procedure, similar
to Kani's method, will be presented. itis assumed that
structure behaves linearly elastic and has small defor-
mation. Here the effect of bending only will be con—

sidered. The formulation, steps of calculation and
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